首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.  相似文献   

2.
Asymmetric nuclear matter is investigated by the Dirac Brueckner Hartree-Fock (DBHF) approach with a new decomposition of the Dirac structure of nucleon self-energy from the G matrix.It is found that the isospin dependence of the scalar and vector potentials is relatively weak,although boty potentials for neutron (proton) become deep (shallow) in the neutron-rich nuclear matter.The results in asymmetric nuclear matter are rather different from those obtained by a simple method,where the nucleon self-energy is deduced from the single-particle energy.The nuclear binding energy as a function of the asymmetry parameter fulfils the empirical parabolic law up to very extreme isospin asymmetric nuclear matter in the DBHF approach.The behaviour of the density depandence of the asymmetry energy is different from that obtained by non-relativistic approaches,although both give similar asymmetry energy at the nuclear saturation density.  相似文献   

3.
The binding energies η and widths Γη of η-mesic nuclei are calculated.We parameterize the η self-energy in the nuclear medium as a function of energy and density.We find that the single-particle energies are sensitive to the scattering length,and increase monotonically with the nucleus.The key point for the study of η-nucleus bound states is the η-nuclear optical potential.We study the s-wave interactions of η mesons in a nuclear medium and obtain the optical potential Uη≈ -72 MeV.Comparing our results with the previous results,we find that the ηN scattering length aηN is indeed important to the calculations.With increasing nuclear density the effective mass of the η meson decreases.  相似文献   

4.
王滕滕 《中国物理 C》2010,34(4):460-464
The binding energies εη and widths Гη of wmesic nuclei are calculated. We parameterize the η self-energy in the nuclear medium as a function of energy and density. We find that the single-particle energies are sensitive to the scattering length, and increase monotonically with the nucleus. The key point for the study of η-nucleus bound states is the η-nuclear optical potential. We study the s-wave interactions of η mesons in a nuclear medium and obtain the optical potential Uη ≈ -72 MeV. Comparing our results with the previous results, we find that the ηN scattering length aηN is indeed important to the calculations. With increasing nuclear density the effective mass of the η meson decreases.  相似文献   

5.
左维 《中国物理 C》2008,32(Z2):64-69
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.  相似文献   

6.
The self-consistent mean field approximation of the two-flavor NJL model,with a free parameter a to reflect the competition between the "direct" channel and the "exchange" channel,is employed to study the QCD phase structure at finite iso spin chemical potential μ_I,finite bary on chemical potential μ_B and finite temperature T,and especially to study the location of the QCD critical point.Our results show that in order to match the corresponding lattice results of iso spin density and energy density,the contributions of the "exchange" channel need to be considered in the framework of the NJL model,and a weighting factor α=0.5 should be taken.It is also found that for fixed isospin chemical potentials,the lower temperature of the phase transition is obtained with increasing a in the T-μ_I plane,and the largest difference of the phase transition temperature with different a's appears at μ_I~1.5 mπ.At μ_I=0 the temperature of the QCD critical end point(CEP) decreases with increasing a,while the critical baryon chemical potential increases.At high isospin chemical potential(μ_I=500 MeV),the temperature of the QCD tricritical point(TCP) increases with increasing a,and in the low temperature regions the system will transition from the pion superfluidity phase to the normal phase as μ_B increases.At low density,the critical temperature of the QCD phase transition with different a's rapidly increases with μ_I at the beginning,and then increases smoothly around μ_I 300 MeV.In the high baryon density region,the increase of the iso spin chemical potential will raise the critical baryon chemical potential of the phase transition.  相似文献   

7.
曹高清  左维  #  李建洋  #  甘胜鑫  #  U.Lombardo 《原子核物理评论》2011,28(4):396-403
在带微观三体力的Brueckner-Hartree-Fock方法下研究了非对称核物质的不可压缩系数,得到了不可压缩系数的同位旋以及密度依赖, 并做了进一步的讨论。在一定密度下,不可压缩系数作为同位旋非对称度的函数随同位旋单调递增。 预测了非对称核物质在平衡态的同位旋依赖性质并与其他理论方法做了比较。 We have investigated the incompressibility of asymmetric nuclear matter within the Brueckner Hartree Fock approach extended to include a microscopic three body force. The isospin dependence and density dependence of the nuclear incompressibility have been obtained and discussed. It is shown that the incompressibility at a fixed density increases monotonically as a function of isospin asymmetry. The isospin asymmetry dependence of the equilibrium properties of asymmetric nuclear matter is also predicted and compared with the results of other theoretical approaches.  相似文献   

8.
郭华  杨树  胡翔  刘玉鑫 《中国物理》2001,10(9):805-808
Multi-lambda matter is investigated in the framework of a chiral hadronic model. It is shown that multi-lambda matter consisting of {N,Λ} is a metastable state as the strangeness per baryon and the density of hadronic matter are varied. The effective lambda mass decreases as the baryon density increases, and remains larger than that of the nucleon.  相似文献   

9.
Starting from the QHD-I model, the nucleon-nucleon interaction potential in hot/dense nuclear matter is studied. We find that the attractive and repulsive Yukawa potential between nucleons is modified by the variation of Debye mass directly and, especially, the nucleon system described by this Yukawa potential will be unbounded at some critical T and μ. The critical point we get accords with that of L-G phase transition given by the P - ρs phase diagram.  相似文献   

10.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force(TBF) . It is shown that the potential energy per nucleon in the isospinsinglet T = 0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities,the TBF effect on the isospin-triplet T = 1 channel contribution turns out to be much larger than that on the T =0 channel contribution. At low densities around and below the normal nuclear matter density,the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T = 1 component is almost independent of isospin asymmetry. As the density increases,the T = 1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T = 0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.  相似文献   

11.
The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n.  相似文献   

12.
The energy per particle BA in nuclear matter is calculated up to high baryon density in the whole isospin asymmetry range from symmetric matter to pure neutron matter.The results,obtained in the framework of the Brueckner-Hartree-Fock approximation with two-and three-body forces,confirm the well-known parabolic dependence on the asymmetry parameterβ=(N?Z)/A(β^2 law)that is valid in a wide density range.To investigate the extent to which this behavior can be traced back to the properties of the underlying interaction,aside from the mean field approximation,the spin-isospin decomposition of BA is performed.Theoretical indications suggest that theβ^2 law could be violated at higher densities as a consequence of the three-body forces.This raises the problem that the symmetry energy,calculated according to theβ^2 law as a difference between BA in pure neutron matter and symmetric nuclear matter,cannot be applied to neutron stars.One should return to the proper definition of the nuclear symmetry energy as a response of the nuclear system to small isospin imbalance from the Z=N nuclei and pure neutron matter.  相似文献   

13.
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in theframework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon E A (δ) calculatedin the full range of spin polarization δ = (ρ↑ - ρ↓)/ρ for symmetric nuclear matter and pure neutron matter fulfills aparabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density alongwith the related quantities such as the magnetic susceptibility and the Landau parameter Go. The main effect of thethree-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value withonly two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurationsstudied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.  相似文献   

14.
The variational and diffusion Monte Carlo approaches are used to study the ground-state properties of a hydrogen molecular ion in a spheroidal box. In this work, we successfully treat the zero-point motion of protons in the same formalism with as of electrons and avoid the Born–Oppenheimer approximation in density function theory. The study shows that the total energy increases with the decrease in volume, and that the distance between protons decreases as the pressure increases.Considering the motion of protons, the kinetic energy of the electron is higher than that of the fixed model under the same conditions and increases by 5%. The kinetic energy of the proton is found to be small under high pressure, which is only a fraction of the kinetic energy of the electron.  相似文献   

15.
李增花  左维  陆广成 《中国物理》2004,13(11):1848-1853
The properties of hot asymmetric nuclear matter are studied in the framework of the finite temperature Brueckner-Hartree-Fock theory that is extended to include the contribution of microscopic three-body forces. We give the variation of the critical temperature with the asymmetry parameter and show the effect brought by this three-body repulsive potential on the value of the critical asymmetry of the phase transition for asymmetric nuclear matter. Owing to the additional repulsion provided by three-body forces, this value decreases. In addition, the domain of mechanical instability for hot nuclear matter is also indicated, which gradually shrinks with increasing asymmetry and temperature.  相似文献   

16.
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot, we obtain the eigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method of Pekar type. This system in a quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations of the probability density of electron on the temperature and the electron-LO-phonon coupling constant and the relations of the period of oscillation on the temperature, the electron-LO-phonon coupling constant, the Coulomb binding parameter and the confinement length are derived. The results show that the probability density of electron oscillates with a period when the electron is in the superposition state of the ground and the first-excited state, and show that there are different laws that the probability density of electron and the period of oscillation change with the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher. And it is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases with increasing the confinement length not only at lower temperatures but also at higher temperatures.  相似文献   

17.
By studying the energy of neutron star matter, we discuss the nuclear symmetry energy at different baryon densities and different coupling constants in the relativistic mean field approximation. The results show that the symmetry energy increases with baryon density at various coupling constants and incompressibilities. Further-more, the symmetry energy at saturation density increases with increasing incompressibility at fixed d, and decreases at fixed c. Specifically, when coupling constants gv and gs are fixed, respectively, the symmetry energy has a little change with increasing incompressibility. It is demonstrated that the NN coupling constants have greater influences on the symmetry energy than the self-coupling constants.  相似文献   

18.
In the various models,we study the influences of the softness of nuclear matter,the vacuum fluctuation of nucleons and σ mesons on the production of strange particles in neutron stars,We find that the stiffer the nuclear matter is,the more easily the strange particles is produced in neutron stars.The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.  相似文献   

19.
We propose a novel self-consistent mean field approximation method by means of a Fierz transformation,taking the Nambu-Jona-Lasinio model as an example.This new self-consistent mean field approximation introduces a new free parameter a to be determined experimentally.When a assumes the value of 0.5,the approximation reduces to the mean field calculation commonly used in the past.Subsequently,we study the influence of the undetermined parameter a on the phase diagram of the two-flavor strong interaction matter.The value of a plays a crucial role in the strong interaction phase diagram,as it not only changes the position of the phase transition point of strong interaction matter,but also affects the order of the phase transition.For example,when a is greater than the critical valueαc = 0.71,then the strong interaction matter phase diagram no longer has a critical end point.In addition,in the case of zero temperature and finite density,we found that when a1.044,the pseudo-critical chemical potential corresponds to ~4-5 times the saturation density of the nuclear matter,which agrees with the expected results from the picture of the hadrons degree of freedom.The resulting equations of state of strong interaction matter at low temperatures and high densities will have an important impact on studies concerning the mass radius relationship of neutron stars and the merging process of binary neutron stars.  相似文献   

20.
The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu-Jona-Lasinio model.We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential.The self-energy of the ρ meson contains the quark-loop contribution,i.e.the leading order contribution in 1/N_C expansion.The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eB_c,which indicates that the charged vector meson condensation,i.e.the electromagnetic superconductor can be induced above the critical magnetic field.Surprisingly,it is found that the charged ρ condensation can even survive at high temperature and density.At zero temperature,the critical magnetic field just increases slightly with the chemical potential,which indicates that charged ρ condensation might occur inside compact stars.At zero density,in the temperature range 0.2 — 0.5 GeV,the critical magnetic field for charged ρ condensation is in the range of 0.2 — 0.6 GeV~2,which indicates that a high temperature electromagnetic superconductor might be created at LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号