首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal behavior of a poly(styrene-b-N-isopropyl acrylamide) diblock copolymer was studied in aqueous solution as well as in thick and in thin films. The polymer was synthesized using reversible addition–fragmentation chain transfer. The critical micelle concentration in aqueous solution was determined using fluorescence correlation spectroscopy. The lower critical solution temperature (LCST) of micellar solutions was detected using microcalorimetry and turbidimetry at 31 °C. Using dynamic light scattering, the collapse of the micelles at the LCST as well as their clustering above was observed. These findings were corroborated with small-angle X-ray scattering. In thick films immersed in water, similar findings were made. In a thin film, however, the LCST is depressed and is found at 26–27 °C.  相似文献   

2.
In this report, we employ surface-initiated atom transfer radical polymerization (SI-ATRP) to graft a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), of controlled thickness from porous silicon (pSi) films to produce a stimulus-responsive inorganic-organic composite material. The optical properties of this material are studied using interferometric reflectance spectroscopy (IRS) above and below the lower critical solution temperature (LCST) of the PNIPAM graft polymer with regard to variation of pore sizes and thickness of the pSi layer (using discrete samples and pSi gradients) and also the thickness of the PNIPAM coatings. Our investigations of the composite's thermal switching properties show that pore size, pSi layer thickness, and PNIPAM coating thickness critically influence the material's thermoresponsiveness. This composite material has considerable potential for a range of applications including temperature sensors and feedback controlled drug release. Indeed, we demonstrate that modulation of the temperature around the LCST significantly alters the rate of release of the fluorescent anticancer drug camptothecin from the pSi-PNIPAM composite films.  相似文献   

3.
Thermo-sensitive porous hydrogels composed of interpenetrated networks (IPN) of alginate-Ca2+ and PNIPAAm have been obtained. The hydrogels were prepared by cross-linking alginate-Na+ with Ca2+ ions inside PNIPAAm networks. Compressive tests and scanning electron microscopy were used to evaluate gel strength and pore morphology, respectively. IPN hydrogels displayed two distinct pore morphologies under thermal stimuli. Below 30-35 °C, the LCST of PNIPAAm in water, IPN hydrogels were highly porous. The pore size of hydrogel heated above LCST became progressively smaller. Alginate-Ca2+ and PNIPAAm hydrogels, used as references, did not present such behaviour, indicating that the porous effect is due to IPN hydrogel. It was verified that higher strength is achieved when the hydrogel presents small pore size and the temperature is increased. It is suggested that at temperatures above LCST, the PNIPAAm chains shrink and pull the alginate-Ca2+ networks back. During shrinking, the polymer chains occupy the open spaces (pores from which water is expelled), and therefore, the hydrogel becomes less deformable when subjected to compressive stress. The results presented in this work indicate that the mechanical properties as well as the pore morphologies of these IPN hydrogels can be tailored by thermal stimulus.  相似文献   

4.
The optical properties of spin-coated titanium dioxide films have been tuned by introducing mesoscale pores into the inorganic matrix. Differently sized pores were templated using Pluronic triblock copolymers as surfactants in the sol-gel precursor solutions and adjusted by varying the process parameters, such as the polymer concentration, annealing temperature, and time. The change in refractive index observed for different mesoporous anatase films annealed at 350, 400, or 450 °C directly correlates with changes in the pore size. Additionally, the index of refraction is influenced by the film thickness and the density of pores within the films. The band gap of these films is blue-shifted, presumably due to stress the introduction of pores exerts on the inorganic matrix. This study focused on elucidating the effect different templating materials (Pluronic F127 and P123) have on the pore size of the final mesoporous titania film and on understanding the relation of varying the polymer concentration (taking P123 as an example) in the sol-gel solution to the pore density and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, cross-section transmission electron microscopy, nitrogen adsorption, ellipsometery, UV/vis spectrometry, and other techniques to understand the interplay between mesoporosity and optical properties.  相似文献   

5.
Polymers with temperature dependent degrees of swelling, especially polymers which exhibit lower critical solution temperature (LCST) behaviour in aqueous solutions, are of interest for applications in microsystems. For these applications it is necessary to form and pattern thin films in the μm-range. This has been achieved through photocrosslinking of linear prepolymers. Copolymers based on N-isopropylacrylamide (NIPAAm) were modified with a stilbazolium salt chromophore to yield photocrosslinkable temperature sensitive polymers. The chromophore reacts via a [2+2]-cycloaddition under irradiation, this can be used to crosslink the polymer. The photocrosslinking properties were studied by UV irradiation of thin films and measuring the changes in UV absorption spectra. Through irradiation of thin films through a mask it was possible to obtain patterned networks in the μm-range (20 μm space width and > 50 μm line width). The polymers exhibited LCST behaviour, which was measured using DSC. The resulting patterned networks had temperature dependent swelling properties in aqueous media.  相似文献   

6.
A method of preparing nanoporous polymer networks containing N-vinylpyrrolidone units via the crosslinking radical copolymerization in bulk performed in the presence of amphiphilic N-vinylpyrrolidone copolymers with the branched morphology and different physicochemical characteristics is developed. It is shown that macromolecular nanoobjects may be extracted from polymer composites using good solvents, such as chloroform and isopropyl alcohol. The physicomechanical, thermal, and diffusion–sorption properties of polymer composites before and after their extraction are compared. SEM and low-temperature nitrogen adsorption measurements reveal that nanosized pores are contained in the network copolymers after extraction of the polymer additives. The specific surface area, total pore volume, pore size, and pore-size distribution are determined. The maximum specific surface area of polymer networks attains ~26 m2/g, and mesopores compose the main type of pores.  相似文献   

7.
In this study, porous poly(L-lactic acid) (PLLA) films are prepared via a facile and low-cost approach using poly(ethylene glycol) (PEG) and solution casting. In contrast to most studies, the PEG/PLLA samples are further processed under different crystallization conditions (i.e., different PLLA crystallization temperatures) before PEG removal. As the PEG is extracted via solvent at higher PLLA crystallization temperatures, the resultant PLLA samples have larger pores. Interconnected fibrillar-shaped pores are found in all systems, and the fibrillar-porous structure width is ~150 nm–1.2 μm, as observed via scanning electron microscopy. These pore sizes can be tuned by adjusting the blend composition and crystallization temperature. In addition, PEG/PLLA blends are subjected to hydrolytic degradation analysis according to their crystallization conditions. Higher PLLA crystallization temperature yields higher PLLA crystallinity and larger pores, as well as reduced surface interaction with water. Therefore, the PLLA degradation rate is decreased. The developed PLLA films have potential applications in drug delivery and tissue engineering.  相似文献   

8.
Compositional profiles of bilayer films in the direction normal to the interfaces have been investigated by neutron reflectivity measurements and analyzed with mean field theory. The bilayer films were prepared with poly(4‐trimethylsilylstyrene) (PTMSS) and polyisoprene (PI), which constitute a miscible polymer pair and whose blends show phase separation at the lower critical solution temperature (LCST) by heating. Because we can accurately control the degree of polymerization of component polymers and can adjust the Flory–Huggins interaction parameter, χ, with the temperature, T, according to the relationship χ = 0.027–9.5/T, the phase behavior and the interfacial structure of PTMSS and PI are predictable by mean field theory. When the bilayer films of PTMSS and PI were set at 90 °C, which is a temperature below the LCST, diffusion at the interface was observed, and the original interface disappeared in several hours; this supports the idea that the polymer pair is miscible. No clear interfaces were identified below the LCST, whereas broad interfaces, compared with that of the strong segregation pairs, were observed above the LCST. The compositions of each layer are consistent with that of the coexisting phase in the polymer blends, and the interfacial widths agree well with the theoretical prediction considering the effect of capillary waves. In addition, all annealed films have a thin surface layer of PTMSS corresponding to surface segregation induced by the lower surface energy of PTMSS (with respect to that of PI). Thus, the interfacial profiles of PTMSS/PI bilayer films have been totally prospected in the framework of mean field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1486–1494, 2005  相似文献   

9.
Here 4-vinylpyridine (4VP) was grafted onto polypropylene films (PP) by mutual irradiation method to give PP-g-4VP; N-isopropylacrylamide (NIPAAm) was then grafted onto the PP-g-4VP films to give (PP-g-4VP)-g-NIPAAm by pre-irradiation method, using a 60Co γ-source. The dependence of grafting percentage on radiation dose, temperature, reaction time, and monomer concentration was studied. (PP-g-4VP)-g-NIPAAm films were characterized by infrared spectroscopy (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The critical pH point and lower critical solution temperature (LCST) were determined by swelling and water contact angle measurements. The LCST also was determined by DSC. The binary graft copolymer films are shown to be thermo-pH sensitive.  相似文献   

10.
Temperature-sensitive N-isopropylacrylamide (NIPAAm) polymer brushes of known molecular weight (20k–25k) were grafted onto micro-porous polycarbonate (PC) films (pore size 0.4 μm) using argon plasma treatment. The resulting composite membranes were tested for controlled drug release at various grafted chain density, which was controlled using 1–3% polymer concentrations. The composites were also characterized in terms of graft yield, membrane thickness, Fourier transform infrared (FTIR) spectra and scanning electron micrography (SEM). The drug permeabilities of 4-acetamidophenol and ranitidine HCl in the resulting membranes were determined at temperatures between 30 and 40 °C. The drug permeability changed remarkably at 34 °C, near the lower critical solution temperature (LCST). The drug passage was regulated by swelling (which occurs at a temperature lower than the LCST) or shrinkage (occurring at an elevated temperature) of the PNIPAAm polymer brushes. These membranes demonstrated on–off ratios of drug permeabilities up to 11 and 14 for the model drugs, respectively. These values are higher than most literature data with similar-size model molecules. The excellent on–off valve mechanism was discussed in terms of the suitable molecular weight and grafted chain density in relation to the pore size and porosity of the PC support. A mathematical model was proposed to predict the drug permeation flux based on the gel conformation data, graft density, characteristics of the micro-porous support, and drug concentrations and diffusivities in water and in the PNIPAAm gel. The model can successfully estimate the drug permeation flux through the composite with higher (0.42 mg cm−2) graft density with a coefficient of determination of 0.95. The discrepancy between the predicted and experimental data at the lower graft density (0.12 mg cm−2) was ascribed to pore channel narrowing resulting from the uneven polymer chain distribution.  相似文献   

11.
Macroporous hydrogels are characterized by large pore sizes, high pore volumes, and high specific surface area. Besides these characteristics, macroporous hydrogels based on thermally reversible polymers respond to temperature changes much faster than hydrogels prepared by a conventional method. Crosslinked poly(N-isopropylacrylamide) (polyNIPAAm) forms a thermally reversible hydrogel which shows a lower critical solution temperature (LCST) ca. 33°C in aqueous solutions. We have synthesized thermally reversible polyNIPAAm hydrogels having macroporous structures by a new method. These macroporous hydrogels have large pore volumes, large average pore sizes, and faster macromolecule permeation rates in comparison to conventional polyNIPAAm hydrogels synthesized by a conventional method. Compared with conventional polyNIPAAm hydrogels, the macroporous polyNIPAAm hydrogels have higher swelling ratios at temperatures below the LCST and exhibit faster deswelling and reswelling rates. The deswelling rates are especially rapid. These thermally reversible macroporous hydrogels may be very useful in controlled active agent delivery and toxin removal, as well as dewatering of solutions. Peptides or proteins may behave as if they were in bulk solution within the large aqueous pores, and this may reduce their inactivation when such gels are used for their storage and later release. The gels may also be useful in microrobotic devices due to their fast response to temperature. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
Temperature responsive copolymers of dextran grafted with poly(N-isopropylacrylamide) (Dex-g-PNIPAAM) were prepared by atom transfer radical polymerization (ATRP) in homogeneous mild conditions without using protecting group chemistry. Dextran macroinitiator was synthesized by reaction of dextran with 2-chloropropionyl chloride at room temperature in DMF containing 2% LiCl. ATRP was carried out in DMF:water 50:50 (v/v) mixtures at room temperature with CuBr/Tris(2-dimethylaminoethyl)amine (Me6TREN) as catalyst. Several grafted copolymers with well defined number and length of low polydispersity grafted chains were prepared. Temperature induced association properties in aqueous solution were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy and atomic force microscopy (AFM). LCST, ranging from 35 to 41 °C, was significantly affected by number and length of grafted chains. The fine tuning of LCST around body temperature is an important characteristic not obtainable by conventional radical grafting of PNIPAAM. Well defined spherical nanoparticles were formed above the LCST of PNIPAAM. Hydrodynamic diameter was in the range 73-98 nm.  相似文献   

13.
Thermo-sensitive poly(2-isopropyl-2-oxazoline)s (PiPrOx) were functionalized with end groups of different polarity by living cationic ring-opening polymerization using the initiator and/or termination method as well as sequential block copolymerization with 2-methyl-2-oxazoline. As end groups, methyl, n-nonyl, piperidine, piperazine as well as oligo(ethylenglygol) and oligo(2-methyl-2-oxazoline) were introduced quantitatively. The lower critical solution temperature (LCST) of the aqueous solutions was investigated. The introduction of hydrophobic end groups decreases the LCST, while hydrophilic polymer tails raise the cloud point. In comparison to poly(N-isopropyl acrylamide), the impact of the end group polarity upon the modulation of the LCST was found to be significantly stronger. Surprisingly, terminal oligoethylenegycol units also decrease the LCST of PiPrOx, thus acting as moieties of higher hydrophobicity as compared to the poly(2-oxazoline) main chain. Together with the possible variation of the side group polarity, this allows a broad modulation of the LCST of poly(2-oxazoline)s.  相似文献   

14.
The synthesis of alpha,omega-end-functionalized copolymers of N-isopropylacrylamide and N-(3-dimethylaminopropyl)acrylamide was performed. Monomer ratios of 100:0, 96:4, and 81:19 were investigated. The lower critical solution temperature (LCST) of these polymers was determined by cloud-point measurements and by microcalorimetric measurements. The LCST increased from 32 over 37 to 47 degrees C as the hydrophobicity increased with increasing amount of comonomer N-(3-dimethylaminopropyl)acrylamide. The polymers could successfully be adsorbed onto gold surfaces. Finally, vesicle adsorption onto these self-assembled polymer films on flat gold surfaces was investigated as the vesicle solution temperature was varied. It could be observed that vesicle adsorption was hindered as long as the temperature of the vesicle solution was above the LCST of the polymer. As soon as it dropped below the LCST the vesicle adsorption process was initiated.  相似文献   

15.
Poly(N-isopropylacrylamide) (PNIPAM) physisorbed on gold surfaces in aqueous solutions has been studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption isotherms of the polymer, that is, the adsorbed mass versus the concentration of PNIPAM in solution, show distinctly different behaviors at temperatures below and above a lower critical solution temperature (LCST). Below the LCST, PNIPAM forms a single compact layer in solutions with concentrations up to 100 ppm in weight; above the LCST, much thicker films of PNIPAM form in the same concentration range. Changes in the dissipation factor versus solvent concentration show a behavior similar to those in the isotherms. The difference in the adsorption behavior below and above the LCST can be qualitatively explained in terms of the conformation difference of the polymer in its swelling and collapsed states.  相似文献   

16.
Polypropylene (PP) films were modified by the consecutive grafting of N,N′-dimethylacrylamide (DMAAm) and N-isopropylacrylamide (NIPAAm) (two-step method) using preirradiation method with gamma-rays. The effect of absorbed dose, monomer concentration and reaction time on the degree of grafting was determined. The grafted samples were verified by the FTIR-ATR spectroscopy; thermal properties were analyzed by differential scanning calorimetry (DSC) and the stimuli-responsive behavior was studied by swelling and contact angle in water as well as DSC. Thermoresponsive films of (PP-g-DMAAm)-g-NIPAAm presented a lower critical solution temperature (LCST) at 36.5 °C.  相似文献   

17.
In this study, a new temperature sensitive polymer was obtained by the solution polymerization of ethoxypropylacrylamide. The monomer, N-(3-ethoxypropyl)-acrylamide was synthesized by the nucleophilic substitution reaction of 3-ethoxy-propylamine and acryloyl chloride. The solution polymerization was performed in ethanol at 70 °C, by using azobisizobutyronitrile as the initiator. Poly(N-(3-ethoxypropyl)acrylamide), PEPA, exhibited a reversible phase transition by the temperature. The effects of polymer and salt concentrations on the lower critical solution temperature, (LCST) behaviour were investigated. LCST was found to be strongly dependent on the polymer concentration. The dynamic light scattering (DLS) measurements confirmed the formation of aggregates by the association of nucleated polymer chains at the temperatures higher than LCST. However an unusual behaviour, a marked decrease in the hydrodynamic diameter by the increasing PEPA concentration was observed below the LCST. The effect of salt concentration on the critical flocculation temperature of PEPA was reasonably similar to poly(isopropylacrylamide), PNIPA. In the ethanol-water media, the reversible phase transition behaviour was observed up the ethanol concentration of 30% v/v. This study indicated that PEPA was a new alternative thermally reversible material for PNIPA. With respect to the well-defined temperature-sensitive polymers like PNIPA, polymer concentration dependent LCST of PEPA can provide significant advantages in the applications like drug targeting, affinity separation and immobilization of bioactive agents.  相似文献   

18.
A series of thermo‐sensitive blending films was prepared from hydroxypropylcellulose (HPC) and polyacrylonitrile (PAN). The effects of materials ratio, pH value, and temperature on the swelling velocity of these blending films were studied. At temperatures above the lower critical solution temperature (LCST), different results are found after dipping blend film samples in acid or alkaline solutions, respectively. At a pH value of 1.4, the swelling velocity of HPC/PAN blended films increased with the HPC content. The films' swelling was mainly controlled by polymer chain relaxation. For a pH value of 7.4 the mechanism responsible for the swelling is the water molecules' diffusion. The swelling velocity was also affected by temperature and pH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
PNIPAM chain collapse depends on the molecular weight and grafting density   总被引:1,自引:0,他引:1  
This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.  相似文献   

20.
The stimuli-responsive copolymers with poly(ethylene oxide) (PEO) as side chain were prepared by free-radical copolymerization of methacrylamide end-capped PEO macromonomer and 4-vinylpyridine (4VP). Phase transition behavior of these copolymers of poly(4-vinylpyridine)-g-poly(ethylene oxide) (P4VP-g-PEO) was investigated as a function of polymer concentration, temperature, pH and ionic strength by monitoring the turbidity of the polymer solutions. The copolymers displayed sharp response to temperature and pH. The LCST of P4VP-g-PEO copolymer increased with the increase of PEO content and decreased with increasing pH due to the deprotonation of the pyridine ring, indicating well-tunable LCST. In addition, the LCST of P4VP-g-PEO9 presented a unique phase transition behavior with varying salt concentration, showing a minimum with 1 M NaCl solution at pH 6.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号