首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dianion [Ru10C(CO)24]2− in CH2Cl2 reacts with CO under ambient conditions to produce quantitative amounts of the species [Ru3(CO)12] and [Ru6C(CO)16]2−; the hydrido-anion [HRu10C(CO)24] reacts similarly to form [Ru6C(CO)16].  相似文献   

2.
Reduction of the heptaosmium cluster [Os7(CO)21] With [Et4N][NH4) gives the cluster dianion [Os7(CO)20]2–,1, in high yield. The reaction of the dianion with [AuPR 3Cl] (R=Et or Ph) in the presence of TlPF6 forms [Os7((CO)20(AuPR 3)2] [R=Et (2a);R = Ph(2b)] in 80% yield, while the corresponding reaction with (Os(C6H6)(CH3CN)3]2+ gives [Os8(CO)20 ( 6-C6H6)] (3) in reasonable yield (ca. 30%). The dianion,1, and the clusters2 and3 have been fully characterized by bout spectroscopic and crystallographic methods. The crystal structure of the [Ph4P]+ salt of1 shows that the metals in the anion adopt a capped octahedral geometry, with all twenty carbonyl ligands in terminal sites. The metal core geometry in2a is best described as a tricapped octahedron, and is based on the structure of the dianion1 with two adjacent octahedral faces capped by the Au atoms of the two AuPEt3 groups. In a similar fashion, the geometry of3 is related to that of1 with the addition of an Os(C6H6) unit capped to a triangular face, to give a bicapped octahedral framework.  相似文献   

3.
Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir( 3-H)(CO)13] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(-H)3(CO)12] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir( 3-H)(CO)13] results in the loss of CO and concomitant formation of the dianion [Ru3Ir( 3-H)(CO)12]2–. The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283K into the anion [Ru3Ir(-H)2(CO)12] by traces of water. The dianion [Ru3Ir( 3-H)(CO)12]2– is also the product of the electrochemical reduction of [Ru3Ir(-H)3(CO)12] accompanied by the loss of H2. Stepwise deprotonation of [Ru3Ir(-H)3(CO)12] with Et4NOH yields [Ru3Ir(-H)2(CO)12] and [Ru3Ir( 3-H)(CO)12]2–. Reverse protonation of the anionic clusters can be achieved, e.g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir( 3-H)(CO)13] into [Ru3Ir(-H)3(CO)12] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir( 3-H)(CO)13] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with irr>340nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H2-saturated hexane, [Ru3Ir( 3-H)(CO)13] converts selectively into the [Ru3Ir(-H)3(CO)12] photoproduct. This conversion is particularly efficient at irr >340nm.  相似文献   

4.
Quantum chemical calculations at the DFT level have been carried out for model complexes [Mo(P)(NH2)3] (1), [Mo(N)(NH2)3] (2), [Mo(PO)(NH2)3] (3), [Mo(NO)(NH2)3] (4), [Mo(CO)5(PO)]+ (5), and [Mo(CO)5(NO)]+ (6). The equilibrium geometries and the vibration frequencies are in good agreement with experimental and previous theoretical results. The nature of the Mo–PO, Mo–NO, Mo–PO+, Mo–NO+, Mo–P, and Mo–N bond has been investigated by means of the AIM, NBO and EDA methods. The NBO and EDA data complement each other in the interpretation of the interatomic interactions while the numerical AIM results must be interpreted with caution. The terminal Mo–P and Mo–N bonds in 1 and 2 are clearly electron-sharing triple bonds. The terminal Mo–PO and Mo–NO bonds in 3 and 4 have also three bonding contributions from a σ and a degenerate π orbital where the σ components are more polarized toward the ligand end and the π orbitals are more polarized toward the metal end than in 1 and 2. The EDA calculations show that the π bonding contributions to the Mo–PO and Mo–NO bonds in 3 and 4 are much more important than the σ contributions while σ and π bonding have nearly equal strength in the terminal Mo–P and Mo–N bonds in 1 and 2. The total (NH2)3Mo–PO binding interactions are stronger than for (NH2)3Mo–P which is in agreement with the shorter Mo–PO bond. The calculated bond orders suggest that there are only (NH2)3Mo–PO and (NH2)3Mo–NO double bonds which comes from the larger polarization of the σ and π contributions but a closer inspection of the bonding shows that these bonds should also be considered as electron-sharing triple bonds. The bonding situation in the positively charged complexes [(CO)5Mo–(PO)]+ and [(CO)5Mo–(NO)]+ is best described in terms of (CO)5Mo → XO+ donation and (CO)5Mo ← XO+ backdonation (X = P, N) using the Dewar–Chatt–Duncanson model. The latter bonds are stronger and have a larger π character than the Mo-CO bonds.  相似文献   

5.
The [Ni36Pt4(CO)45]6- and [Ni37Pt4(CO)46]6- clusters have been obtained in mixture upon reaction in acetonitrile of [Ni6(CO)12]2- salts with K2PtCl4 in a 2.5:1 molar ratio. The two hexaanions were indistinguishable by spectroscopic techniques. Crystallization of their trimethylbenzylammonium salts led to crystals of composition 0.5[NMe3CH2Ph]6[Ni36Pt4(CO)45]-0.5[NMe3CH2Ph]6[Ni37Pt4(CO)46]·C3H8O, hexagonal,space group P63 (No. 173), a=17.853(9), c=27.127(13) Å, Z=2; final R=0.057. The metal core of the [Ni36Pt4(CO)45]6- anion consists of a Pt4 tetrahedron fully encapsulated in a shell of 36 Ni atoms belonging to a very distorted and incomplete 5 tetrahedron. The [Ni37Pt4(CO)46]6- hexaanion derives from the former by capping the unique triangular face of the metal polyhedron with an additional Ni(CO) fragment. The [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- mixture is rapidly degraded to the known [Ni9Pt3(CO)21]4- cluster by exposure to carbon monoxide. Its reaction with protic acids initially affords the corresponding [H6-nNi36Pt4(CO)45]n--[H6-nNi37Pt4(CO)46]n- (n=5, 4) derivatives, and eventually leads to rearrangement to the known [H6-n Ni38Pt6(CO)48]n- species. Both [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- and [HNi36Pt4(CO)45]5--[HNi37Pt4(CO)46]5- mixtures have been chemically and electrochemically reduced to their corresponding [Ni36Pt4(CO)45]n--[Ni37Pt4(CO)46]n- (n=7–9) and [HNi36Pt4(CO)45]n--[HNi37Pt4(CO)46]n- (n=6–8) mixtures.  相似文献   

6.
7.
The complexes [MI2(CO)3(NCMe)2] (M = Mo or W) react with one equivalent of L in CH2Cl2 at room temperature to give initially the mononuclear seven-coordinate complexes [MI2(CO)3(NCMe)L] which have been isolated for M = W; L = 3Cl-py, 3Br-py, 4Cl-py and 4Br-py. These compounds dimerise to give the iodidebridged dimers [M(μ-I)I(CO)3L]2 by displacement of acetonitrile. When M = Mo; L = 3Cl-py, 3Br-py, 4Cl-py and 4Br-py, and when M = Mo and W; L = py, 2Me-py (for M = W only), 4Me-py, 3,5-Me2-py, 2Cl-py and 2Br-py, only the dimeric complexes have been isolated. The ease of dimerisation of [MI2(CO)3(NCMe)L] is discussed in terms of the steric and electronic effects of the substituted pyridines.  相似文献   

8.
Treatment of carbido cluster Ru5(μ 5-C)(CO)15 with Me3NO in acetonitrile solution followed by addition of dimethyl maleate or dimethyl acetylene dicarboxylate affords new clusters Ru5(μ 5-C)(CO)13[C2H2(CO2Me)2] (1) and Ru5(μ 5-C)(CO)15[C2(CO2Me)2] (2), respectively. Single crystal X-ray structural studies reveal that both complexes contain a wingtip-bridged butterfly pentametallic skeleton. In complex1 the maleate fragment is coordinated to one wingtip Ru atom through its carbon-carbon double bond and to the adjacent Ru atom by the formation of two O → Ru dative bonding interactions, while the acetylene dicarboxylate fragment in2 is best considered as acis-dimetallated alkene, linking one hinge Ru atom and the nearby Ru atom at the bridged position. Crystal data for1: space group P 42/n;a=20.199(6),c=13.941(3) Å,Z=8; finalR F=0.025,R w=0.026 for 3963 reflections withI>2σ(I). Crystal data for2: space group P21/n;a=9.634(3),b=20.062(6),c=17.372(5) Å,β=90.62(2)°,Z=4; finalR F=0 033,R w=0.036 for 4683 reflections withI>3σ(I).  相似文献   

9.
X-ray structural studies of new thermolysis products from the reaction of Ru3(CO)12 in heptane in the presence of 1,3,5-trimethylbenzene (mesitylene) confirm that they are the decaruthenium carbido-cluster dianion [Ru10C(CO)24]2− (I) and the hydrido decaruthenium carbido-cluster monoanion [HRu10C(CO)24] (II). Both anions have the giant tetrahedron Ru10 metal framework, and the monohydride provides the first example of a hydrido ligand in a tetrahedral Ru4 cavity.  相似文献   

10.
4-Tropone)Fe(CO)3 and (η4-isoprene)Fe(CO)3 form separable diastereoisomers on substitution of CO by (+)-(neomenthyl)PPh2. In the tropone complex, diastereoisomer interconversion occurs by a 1,3-metal shift. The absolute configuration of the isoprene complex has been determined crystallographically.  相似文献   

11.
Addition of LiEt3BH to CpWMe(CO)3 results in consecutive formation of trans-[CpWMe(CHO)(CO)2] (some of which exists in solution as two rotamers of a BEt3 adduct) and trans[CpWH(COMe)(CO)2]. Reaction of the latter with CHI3 and subsequent treatment of the product with either (i) Me3SiCl, followed by filtration through SiO2 or (ii) Me3OBF4 gives hydroxy- or methoxy-carbenes CpWI[C(OR)Me](CO)2 (R H or Me), respectively.  相似文献   

12.
The title compound [Co3(CO)9(μ3-C)C(O)OCH2]2 was synthesized by the reaction of [Cl3CC(O)OCH2]2 with Co2(CO)8 at 40~50 ℃. Crystal data: C24H4O22Co6, Mr=997.88, monoclinic, space group P21/n(#14), a=9.330(2), b=15.197(4), c=11.783(4), β=91.16(2)°, V=1670.4(7) 3, Z=2, Dc=1.984 g/cm3, μ(MoKα)=30.01 cm-1, F(000)=972.00, T=293K, final R=0.045, Rw=0.051 for 1936 observed reflections with I>2σ(I). The structure contains two centrosymmetric dimeric molecules in a unit cell, each of which has two tetrahedral skeletons (CCo3) connected through a C(O)OCH3CH2OC(O) bridge.  相似文献   

13.
The free energies interconnecting nine tungsten complexes have been determined from chemical equilibria and electrochemical data in MeCN solution (T = 22 °C). Homolytic W-H bond dissociation free energies are 59.3(3) kcal mol(-1) for CpW(CO)(2)(IMes)H and 59(1) kcal mol(-1) for the dihydride [CpW(CO)(2)(IMes)(H)(2)](+) (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), indicating that the bonds are the same within experimental uncertainty for the neutral hydride and the cationic dihydride. For the radical cation, [CpW(CO)(2)(IMes)H](?+), W-H bond homolysis to generate the 16-electron cation [CpW(CO)(2)(IMes)](+) is followed by MeCN uptake, with free energies for these steps being 51(1) and -16.9(5) kcal mol(-1), respectively. Based on these two steps, the free energy change for the net conversion of [CpW(CO)(2)(IMes)H](?+) to [CpW(CO)(2)(IMes)(MeCN)](+) in MeCN is 34(1) kcal mol(-1), indicating a much lower bond strength for the 17-electron radical cation of the metal hydride compared to the 18-electron hydride or dihydride. The pK(a) of CpW(CO)(2)(IMes)H in MeCN was determined to be 31.9(1), significantly higher than the 26.6 reported for the related phosphine complex, CpW(CO)(2)(PMe(3))H. This difference is attributed to the electron donor strength of IMes greatly exceeding that of PMe(3). The pK(a) values for [CpW(CO)(2)(IMes)H](?+) and [CpW(CO)(2)(IMes)(H)(2)](+) were determined to be 6.3(5) and 6.3(8), much closer to the pK(a) values reported for the PMe(3) analogues. The free energy of hydride abstraction from CpW(CO)(2)(IMes)H is 74(1) kcal mol(-1), and the resultant [CpW(CO)(2)(IMes)](+) cation is significantly stabilized by binding MeCN to form [CpW(CO)(2)(IMes)(MeCN)](+), giving an effective hydride donor ability of 57(1) kcal mol(-1) in MeCN. Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) is fully reversible at all observed scan rates in cyclic voltammetry experiments (E° = -1.65 V vs Cp(2)Fe(+/0) in MeCN), whereas CpW(CO)(2)(IMes)H is reversibly oxidized (E° = -0.13(3) V) only at high scan rates (800 V s(-1)). For [CpW(CO)(2)(IMes)(MeCN)](+), high-pressure NMR experiments provide an estimate of ΔG° = 10.3(4) kcal mol(-1) for the displacement of MeCN by H(2) to give [CpW(CO)(2)(IMes)(H)(2)](+).  相似文献   

14.
Antimony is reduced when [SbPh2BrO]2 is treated with Na[Mo(CO)3(η5-C5H5)] to produce [μ-SbPh2]2[Mo(CO)2(η5-C5H5)]2. A structure determination shows diphenylstibido groups bridging between two Mo(CO)2(η5-C5H5) moieties giving a central ‘butterfly’ shaped Sb2Mo2 ring. The cyclopentadiene rings are trans to each other and Mo–Sb and Sb–Sb separations are both short. An iron analogue could not be obtained from [SbPh2BrO]2 and Na[Fe(CO)2(η5-C5H5)] but a mixture of SbPh[Fe(CO)2(η5-C5H5)]2 and SbPh2[Fe(CO)2(η5-C5H5)] was obtained using SbPh2Cl. An X-ray structure for SbPh[Fe(CO)2(η5-C5H5)]2 shows an open stibinidine structure.  相似文献   

15.
Redox condensation of [Ru3H(CO)11]- with Ni(CO)4, in tetrahydrofuran solution, under a nitrogen atmosphere, yields the tetranuclear anion [NiRuH(CO)11)-. Subsequent deprotonation with Bu'OK in acetonitrile solution leads to the formation of the related dianion. Both anions have been characterized by spectroscopic techniques, elemental analysis and single crystal X-ray diffraction. [PPh4][NiRu3H(CO)12] crystallizes in the triclinic space group PI with unit cell dimensionsof a = 11.842(2) Å,b = 12.335(3) Å, c = 13.3080) Å,a = 91.89(2)°, = 93.35(1)°,y = 96.41(2)°, Z = 2, V= 1926.9(7) Å'. The NiRu3, metal core of the molecule defines a distorted tetrahedron with nine terminal and three edge bridging carbonyl groups. The hydrido ligand was located by difference Fourier techniques and was found to bridge the NiRu2 basal triangle at a distance of 0.88(6) A from this plane. Selected average distances and angles are: Ru-Ru = 2.839 Å, Ru-Ni = 2.640 Å, Ru-C, = 1.910 A,Ru-C b = 2.084 Å, Ni-C b = 2.022 Å, Ru-H = 1.77 Å, C-0, = 1.135 Å, C-O b = 1.159 Å, M-C-O, = 176.3°,M-C--O b = 139.3°;other distances are: Ni-C1 = l.758(7) Å, Ni-H= 1.85(7) Å. [NEt4]2[NiRu3(CO)12] crystallizes in the orthorhombic space group Pnma (no. 62) with unit cell dimensions ofa=20.247(5) Å,b = 15.038(4)Å,c = 12.079(3) Å, Z=4, V=3678(2) A'. The molecule contains a tetrahedral NiRu3 core with eight terminal and four edge bridging carbon monoxide groups which bridge the three Ni-Ru and one Ru-Ru bond. Average distances and angles are: Ru -Ru =2.3050A Ru-Ni 2.648 Å, Ru-C t = 1.878 Å, Ru-C b 2.045 Å, Ni-C b = 2.055 Å, C-O t = 1.145 Å, C-01,=1.157 Å, M-C-O,= 176.9°, M-C-O b = 138.6°; other distance is: Ni-C t = 1.754(10) Å,t = terminal,b = bridging.  相似文献   

16.
The cluster anion [HRu3(CO)11]- (1) reacts with dicyclohexylphosphine in THF solution to give the anionic derivative [HRu3(CO)8(PCy2)2]- (2), protonation of which yields the neutral cluster H2Ru3(CO)8(PCy2)2 (3) and, in the presence of excess phosphine, HRu3(CO)7(PCy2)3 (4). In protic methanol as reaction medium, the reaction of 1 with HPCy2 gives directly the neutral complex H2Ru3(CO)6(PCy2)2(HPCy2)2 (5), together with 4. The single-crystal structure X-ray analysis of 3 shows a closed triangular Ru3 framework. The electron count is in accordance with the EAN rule, but the structure analysis of 5 reveals an open, almost linear Ru3 skeleton, which is electron-deficient with respect to the EAN rule.  相似文献   

17.
The compound [Ru4(μ-Se)2(CO)8(μ3-CO)3] (1), has been obtained in good yield by vacuum pyrolysis of [RU3(CO)12] with [Ph2Se2] at 185°C. Reaction of 1 with 1,3-bis(diphenylphosphino)propane at room temperature affords the novel cluster [RU33-Se)2(CO)7(Ph2P(CH2)3PPh2)] (2). The structures of 1 and 2 have been determined by an X-ray diffraction study.  相似文献   

18.
Cp2Cr2(CO)4( - 2 - P2), 1, reacts with one molar equivalent of Fe2(CO)9 in THF to yield the mono- and di-iron complexes, Cp2Cr2(CO)4P2[Fe(CO)4], 2, (16.5% yield) and Cp2Cr2(CO)4P2[Fe(CO)4]2, 3, (16.9% yield), as dark magenta brown and dark greenish brown crystals, respectively. Both complexes were characterized by single-crystal X-ray diffraction analysis. Crystal data –2: space group =P21/c,a=17.024(1) Å,b=8.180(1) Å,c=30.891(2) Å, =100.953(5)°,V=4223.4(7)Å3,Z=8, 3743 observed reflections,R F=0.033; 3: space group P1,a=10.209(2) Å,b=10.212(2) Å,c=15.989(3) Å, =106.93(1)°, =91.87(1)°, =119.50(1)°,V=1356.5(4) Å3,Z=2, 3489 observed reflections,R F=0.029.  相似文献   

19.
《Polyhedron》2001,20(9-10):1107-1113
The reactions of dipropargyl manolate and terephthalate, respectively, with Co2(CO)8 in THF at room temperature gave four new compounds [R(CO2CH2C2H-μ)2][Co2(CO)6]2 (R=CH2, 1a; R=C6H4, 1b) and [(HC2CH2OCO)R(CO2CH2C2H-μ)][Co2(CO)6] (R=CH2, 2a; R=C6H4-1,4-, 2b), and compounds 2a and b reacted with RuCo2(CO)11 to form two new linked clusters [R(CO2CH2C2H-μ)2][Co2(CO)6][RuCo2(CO)9] (R=CH2, 3a; R=C6H4-1,4-, 3b). The treatment of two dipropargyl esters, respectively, with RuCo2(CO)11 afforded another two new clusters [R(CO2CH2C2H-μ)2][RuCo2(CO)9]2 (R=CH2, 4a; R=C6H4-1,4-, 4b). The reactions of dipropargyl manolate, terephalate with Mo2Cp2(CO)4 gave rise to the formation of dinuclear complexes [(HC2CH2OCO)R(CO2CH2C2H-μ)][Mo2Cp2(CO)4] (R=CH2, 5a; R=C6H4-1,4-, 5b), compound 5a reacted with Co2(CO)8 to produce the cluster [CH2(CO2CH2C2H-μ)2][Co2(CO)6][Mo2Cp2(CO)4] 6a. All the new clusters have been characterized by C/H elemental analysis, IR and 1H NMR spectroscopies. The structure of [CH2(CO2CH2C2H-μ)2][Co2(CO)6]2 1a and [p-(HC2CH2OCO)C6H4(CO2CH2C2H-μ)][Co2(CO)6] 2b have been determined by single crystal X-ray diffraction methods.  相似文献   

20.
The reaction of [HOs3(CO)11]−11 with [Os3(CO)10(MeCN)2] in acetone gives the green-blue anion [HOs3(CO)10·O2C·Os6(CO)20] (1) amongst several other products; this anion has been structurally characterised by a single crystal X-ray study of its Bu4P+ salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号