首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A hybrid preparative method was developed to prepare organosulfur-functionalized Au nanoparticles (NPs) on silicon nanowires (SiNWs) by reacting HAuCl(4) with SiNW in the presence of thiol. A number of organosulfur molecules-dodecanethiol, hexanethiol, 1,6-hexanedithiol, and tiopronin-were used to functionalize the Au surface. Size-selected NPs ranging from 1.6 to 7.5 nm were obtained by varying the S/Au ratio and the concentration of HAuCl(4). This method was further extended to the preparation Pd and Pd-Au bimetallic NPs on SiNWs. The morphology of the metal nanostructures was examined by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The local structure and bonding of the SiNW-supported metal nanostructures were studied using X-ray absorption fine structures (XAFS) [including both X-ray near-edge structures (XANES) and extended X-ray absorption fine structures (EXAFS)] at the Au L(3)-, Pd K-, S K-, and Si K-edges. It was also found that the annealing of the thiol-capped Au NPs up to 500 degrees C transforms the surface of the thiol-capped NPs to gold sulfide, as identified using Au L(3)- and S K-edge XANES. We also illustrate that this preparative approach can be used to form size-controllable Au NPs on carbon nanotubes.  相似文献   

2.
Well-defined Au/Pd(111) alloy films have been prepared on a Ru(0001) substrate by electrochemical metal deposition and subsequent heating up to 700 degrees C. The electrochemical behaviour of the 20 monolayers thick epitaxially-grown films is in excellent agreement with both equilibrium surface composition and distribution for Au/Pd alloys on Mo(110) as previously reported (D. W. Goodman et al., J. Phys. Chem., 2005, B109, 18535). The electrocatalytic activity of the AuPd(111) surface alloys was studied for the hydrogen evolution in 0.1 M H(2)SO(4) as a function of surface composition. Maximum activities were found for Pd fractions of 0.2 +/- 0.1, where the population of Pd atoms surrounded by Au has its maximum. These Pd monomers are found to be about 20 times more active than Pd atoms in the Pd overlayer.  相似文献   

3.
Engineering noble metal nanostructures at the atomic level can significantly optimize their electrocatalytic performance and remarkably reduce their usage. We report the synthesis of atomically dispersed Pt on screw-like Pd/Au nanowires by using ultrafine Pd nanowires as seeds. Au can selectively grow on the surface of Pd nanowires by an island growth pattern to fabricate surface defect sites to load atomically dispersed Pt, which can be confirmed by X-ray absorption fine structure measurements and aberration corrected HRTEM images. The nanowires with 2.74 at % Pt exhibit superior HER properties in acidic solution with an overpotential of 20.6 mV at 10 mA cm−2 and enhanced alkaline ORR performance with a mass activity over 15 times greater than the commercial platinum/carbon (Pt/C) catalysts.  相似文献   

4.
Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.  相似文献   

5.
利用壳层厚度调节核壳Au@Pd纳米粒子的SERS活性   总被引:4,自引:0,他引:4  
设计合成了一种尺寸可控, 且外壳上无“针孔”的核壳钯包金(Au@Pd)纳米粒子, 通过改变核的尺寸和外壳的厚度来调控其光学性质, 并用TEM、HRTEM、UV-Vis和SERS等手段对其进行了表征. 通过研究Au@Pd纳米粒子的SERS活性随Pd壳层厚度变化的规律, 发现薄壳Au@Pd纳米粒子远远优于Pd金属本身的SERS活性, 其原因主要是内层金核电磁场增强的长程效应.  相似文献   

6.
A combination of time-resolved X-ray absorption spectroscopy (XAS), hard X-ray diffraction (HXRD), diffuse reflectance infrared spectroscopy (DRIFTS), and mass spectrometry (MS) reveals a series of size-dependent phenomena at Pd nanoparticles upon CO/(NO+O(2)) cycling conditions. The multitechnique approach and analysis show that such size-dependent phenomena are critical for understanding Pd CO elimination behavior and, particularly, that different Pd(I) and Pd(0) centers act as active species for a size estimated by XAS to be, respectively, below and above ca. 3 nm. The relative catalytic performance of these two noble metal species indicates the intrinsic higher activity of the Pd(I) species.  相似文献   

7.
Sputtering yields, positive secondary ion yields and relative degrees of ionization of sputtered atoms under bombardement of 10keV O2+-ions have been determined for the single-phase binary alloy system Au/Pd. A weak minimum of the total sputtering yields was observed at a Pd-concentration around 75% atomic.Strong surface topography was found after high-dose ion bombardment. Sputtering yields, together with surface enrichment factors determined by Auger Electron Spectroscopy have been used to calculate surface binding energies for both alloy components.The apparent degree of ionization for positive ions shows a different behaviour for the two alloy components; whereas an almost constant value was found for Au, a distinct maximum at a Pd-concentration of about 40% was observed for Pd. The measurements indicate that, in the concentration range investigated, the concept of constant relative sensitivity factors would yield large analytical errors when applied to the quantization of secondary ion mass spectra of Au/Pd alloys.  相似文献   

8.
Electrochemical oxidation of freshly deposited Pd and its alloys with other noble metals (Au, Pt, Rh) was compared with the behavior of samples subjected to prior hydrogen absorption/desorption procedure. It was found that surface oxidation of hydrogen-treated Pd and Pd–Pt–Au deposits starts at lower potentials than on non-hydrided electrodes and is accompanied by a negative shift of surface oxide reduction peak. Pd and its alloys with Au, Pt and Rh after hydrogen treatment are also more resistant to electrochemical dissolution than freshly deposited samples.  相似文献   

9.
In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-??-cyclodextrin (H2N-??-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-??-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).  相似文献   

10.
通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致.  相似文献   

11.
Understanding metal alloy migration in metal‐catalyzed nanowires growth is a prerequisite for improving its potential applications in the field of nanodevices. Here, we explored the surface migration of Au alloys in vertically aligned Si nanowires with different cooling rates. We varied the diameter of Au alloys by controlling the thickness of Au film as a catalyst for SiNW growth, and found that the behavior of Au alloys migration is dependent on size of Au alloys. In addition, the size‐dependent migration mechanism of Au alloys was investigated at different cooling rates, which is related to different Au‐Si eutectics.  相似文献   

12.
The ligand substitution reaction, Pd L(3,2,1)-edge and S K-edge x-ray absorption fine structure (XAFS), XAFS simulations, and valence-band and core-level x-ray photoelectron spectroscopy (XPS) have been used to systematically study the surface chemical and electronic properties of wet-chemically prepared Pd nanoparticles of varied size, molecular capping, and metal composition. It was found that the replacement of weakly interacting capping molecules (amine and tetra-alkylphosphonium bromide) with strongly binding thiols caused a considerable change in the surface bonding of Pd nanoparticles. However, the Pd d-electron counts (number of d electrons) remained almost unchanged before and after ligand substitution, which is unexpected since Pd atoms normally lose electrons to the more electronegative S atoms. XAFS results and simulations provided useful insights into the surface structural characteristics of Pd nanoparticles and satisfactorily accounted for the unexpected d-electron behavior involved in the ligand substitution process. XPS valence and core-level spectra further revealed a size-dependent d-band narrowing and presented complementary information to XAFS about the surface electronic properties of Pd atoms. The small weakly bound Pd nanoparticles seem inevitably to have a net d-electron depletion due to the influence of the surface effect (chemical adsorption by oxygen), which is more significant than the d-electron enriching nanosize effect. However, it was demonstrated that by forming Pd-Ag alloy nanoparticles, a net increase of the Pd d-electron counts can be realized. Therefore, it is illustrated that by manipulating the surface, size, and alloying effects, the electronic properties of Pd nanoparticles can be possibly tuned.  相似文献   

13.
Formation and oxidation processes of PdZn nanoparticles on ZnO were successfully observed by means of in situ time-resolved X-ray absorption fine structure spectroscopy (XAFS), and the analysis of data on near-edge (XANES) and extended (EXAFS) structures revealed detailed changes in Pd during both processes. PdZn nanoparticles were formed on ZnO through a two-step scheme under a hydrogen atmosphere. The first process was the formation of metallic Pd nanoparticles, which was quickly finished within 1 s. The second process was the formation of PdZn nanoparticles, which took several tens of minutes. Oxidation of the PdZn nanoparticles also consisted of two processes. Zn atoms were oxidized prior to Pd atoms and the metallic Pd nanoparticles surrounded by ZnO were formed afterwards. Oxidation of the metallic Pd nanoparticles was scarce and very slow. According to the results of kinetic analyses, the metallic Pd surrounded by ZnO was a stable species under the oxidative atmosphere.  相似文献   

14.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

15.
We present a quantitative study of the catalytic activity of well-defined faceted gold-palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir-Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold-palladium alloy nanoparticles is made in terms of Langmuir-Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles' electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.  相似文献   

16.
Electrosorption of hydrogen into palladium-gold alloys   总被引:1,自引:0,他引:1  
Hydrogen electrosorption into Pd-Au alloys has been studied in acidic solutions (1 M H2SO4) using cyclic voltammetry. Pd-Au electrodes with limited volume were prepared by electrochemical co-deposition. It was found that the maximum H/(Pd+Au) ratios decrease monotonically with increasing gold content and reach zero at ca. 70 at% Au. Similarly to the case of Pd limited volume electrodes, two peaks in the hydrogen region, corresponding to two types of sorbed hydrogen, are observed on voltammograms for Pd-rich alloys. The hydrogen capacity, H/(Pd+Au), measured electrochemically, depends on the sweep rate in the cyclic voltammetry experiments, which suggests that two different mechanisms for hydrogen desorption from the Pd-Au alloy are possible. After a strong decrease of Pd concentration at the electrode surface, caused by long cyclic polarization to sufficiently anodic potentials, the amount of absorbed hydrogen is still significant for alloys initially rich in Pd. The results obtained from CO adsorption experiments suggest that only Pd atoms are active in the hydrogen absorption/desorption process. Electronic Publication  相似文献   

17.
This paper describes how size exclusion chromatography (SEC) can be used to rapidly characterize Au/Pd core/shell nanoparticles (NPs). We monitored the sizes of Au/Pd core/shell NPs by effecting SEC separation using a mobile phase of 10 mM sodium dodecyl sulfate (SDS); the plot of retention time with respect to the standard size of the Au NPs was linear (R 2 = 0.991) for diameters falling in the range from 12.1 to 59.9 nm; for five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. Under the optimized separation conditions, we found that the addition of the surfactant SDS stabilized the Au/Pd core/shell NP samples. In addition, SEC analysis revealed that the sizes of the Au/Pd core/shell NPs could be controlled via modification of the rate of addition of the reducing agent and the use of adequate volumes of the seed and shell precursor metal ion solutions. When using these conditions to analyze the Au/Pd core/shell NPs produced through seed-assisted synthesis, a good correlation existed between the sizes determined through SEC and transmission electron microscopy. Our results suggest that SEC is a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

18.
The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium–hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero‐interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell‐type bimetallic nanoparticles. It is proposed that the potential formed in the hetero‐interface stabilizes hydrogen atoms rather than interstitials in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.  相似文献   

19.
The synthesis, isolation, and stereochemical characterization of Au(2)Pd(41)(CO)(27)(PEt(3))(15)(1) are described. This nanosized Au(2)Pd(41) cluster (maximum metal-core diameter, 1.04 nm) was originally obtained with Au(2)Pd(21)(CO)(20)(PEt(3))(10) as low-yield by-products together with Pd(145)(CO)(x)(PEt(3))(30)(x approximately 60) from the reaction of Pd(PEt(3))(2)Cl(2) and Au(PPh(3))Cl in DMF with NaOH under CO atmosphere. The subsequent preparation of Au(2)Pd(21)(CO)(20)(PEt(3))(10) in greatly improved yields (preceding article) thereby provided the starting material that led to the isolation of 1 in reasonable yields (54%) from an overnight refluxing of the preformed Au(2)Pd(21) cluster in THF under N(2). Both the composition (subsequently ascertained from elemental analysis) and molecular geometry of 1 were unequivocally established from a low-temperature CCD X-ray diffraction study, which revealed a cubic unit cell of P2(1)3 symmetry with four molecules of 1 and four co-crystallized triphenylphosphine oxide molecules each lying on a crystallographic three-fold axis. The entire Au(2)Pd(41) core of pseudo-C(3h) symmetry may be viewed as a central Au(2)Pd(29) fragment of pseudo-D(3h) symmetry composed of two heretofore geometrically unknown 13-coordinated Au-centered (mu(13)-Au)Pd(13) polyhedra that share a common internal Pd(i)(3) triangular face perpendicular to the C(3) principal axis and of three three-fold-related interpenetrating 12-coordinated Pd-centered (mu(12)-Pd)Au(2)Pd(10) icosahedra. A comparative analysis of this central Au(2)Pd(29) fragment in with an internal Au(i)(2)Pd(i)(3) trigonal bipyramid vs. the corresponding central Pd(29) fragment in the known homopalladium Pd(35)(CO)(23)(PMe(3))(15) (2) with an internal Pd(i)(5) trigonal bipyramid resulting from five interpenetrating 12-coordinated Pd-centered [(mu(12)-Pd)Pd(12)] icosahedra is particularly illuminating; it provides a striking illustration of the remarkable observed difference between Pd- vs. Au-centered polyhedra which is attributed to a large electronegativity-mismatch in radial bonding interactions that occurs upon replacement of the Pd-centered atom with a highly electronegative Au-centered atom. The entire Au(2)Pd(41) core-geometry is obtained by additional face-condensations of 12 tetracapping Pd(cap) atoms. This cluster is stabilized by 15 PEt(3) ligands and 27 doubly- and triply-bridging CO ligands. A close geometrical resemblance between the three three-fold-related Au(2)Pd(14) moities within the Au(2)Pd(41) core in 1 and the entire Au(2)Pd(14) core in the known [Au(2)Pd(14)(CO)(9)(PMe(3))(11)](2+) dication (3) is observed; resulting stereochemical implications are given.  相似文献   

20.
An in-depth understanding of the fundamental structure of catalysts during operation is indispensable for tailoring future efficient and selective catalysts. We report the evolution of the structure and oxidation state of ZrO(2)-supported Pd nanocatalysts (~5 nm) during the in situ reduction of NO with H(2) using X-ray absorption fine-structure spectroscopy and X-ray photoelectron spectroscopy. Prior to the onset of the reaction (≤120 °C), a NO-induced redispersion of our initial metallic Pd nanoparticles over the ZrO(2) support was observed, and Pd(δ+) species were detected. This process parallels the high production of N(2)O observed at the onset of the reaction (>120 °C), while at higher temperatures (≥150 °C) the selectivity shifts mainly toward N(2) (~80%). Concomitant with the onset of N(2) production, the Pd atoms aggregate again into large (6.5 nm) metallic Pd nanoparticles, which were found to constitute the active phase for the H(2)-reduction of NO. Throughout the entire reaction cycle, the formation and stabilization of PdO(x) was not detected. Our results highlight the importance of in situ reactivity studies to unravel the microscopic processes governing catalytic reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号