首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of laser metal welding is widely used in industry. Nevertheless, there is still a lack of complete process understanding and control. For analyzing the process we used two high-speed cameras. Therefore, we could image the plasma plume (which is directly accessible by a camera) and the keyhole (where most of the process instabilities occur) during laser welding isochronously. Applying different image processing steps we were able to find a correlation between those two process characteristics. Additionally we imaged the plasma plume from two directions and were able to calculate a volume with respect to the vaporized material the plasma plume carries. Due to these correlations we are able to conclude the keyhole stability from imaging the plasma plume and vice versa. We used the found correlation between the keyhole behavior and the plasma plume to explain the effect of changing laser power and feed rate on the keyhole geometry. Furthermore, we tried to outline the phenomena which have the biggest effect on the keyhole geometry during changes of feed rate and laser power.  相似文献   

2.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

3.
High-speed holographic interferometry was applied to the experimental study of a laser-induced plasma plume in pulsed laser welding. We adopted two kinds of holographic interferometers for visualizing and imaging the refractive index distribution of the plume and vaporized metal; a real-time holographic interferometer with a high-speed camera and a double-pulsed holographic interferometer with a dual-reference-beam module. The high-speed photographs of the weld plume were compared with the visualized images by holographic interferometer. The experimental results show the process of generation and propagation of the laser-induced plume and give the feasibility of quantitative measurement of the density distribution of the laser-induced plume and vaporized metal in laser welding.  相似文献   

4.
高向东  汪润林  龙观富  Katayama Seiji 《物理学报》2012,61(14):148103-148103
对于大功率盘型激光焊,金属焊件表面在激光束辐射下强烈汽化并形成等离子体状的金属蒸汽羽状物. 该金属蒸汽羽状物可逆向激光束传输,对激光有明显的屏蔽作用, 降低激光辐射至焊件的能量密度,影响焊接效率和质量. 因此研究金属蒸汽特征变化规律及其与焊接质量之间的关联 ,可实现由金属蒸汽特征实时监测激光焊接状态. 以10 kW大功率盘型连续激光焊接304不锈钢钢板为试验对象, 应用高速摄像机摄取金属蒸汽动态图像,将其转换至色调-色饱和度-亮度空间, 提取金属蒸汽面积、激光束受影响路径长度等相关特征量, 以焊缝熔宽的变化作为衡量焊接状态稳定性的参数. 通过金属蒸汽特征值的均值统计和方差分析,试验证明根据金属蒸汽面积和激光束受影响路径长度等金属蒸汽特征可有效地反映熔宽质量, 从而对焊接状况做出动态评估.  相似文献   

5.
The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW). There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration. Therefore, in order to obtain the temperature field, flow field, and arc pressure of a plasma arc under the reaction of the keyhole, the physical model of a plasma arc with a pre-set keyhole was established. In addition, the tungsten and base metal were established into the calculated domain, which can reflect the effect of plasma arc to weld pool further. Based on magneto hydrodynamics and Maxwell equations, a two-dimensional steady state mathematical model was established. Considering the heat production of anode and cathode, the distribution of temperature field, flow field, welding current density, and plasma arc pressure were solved out by the finite difference method. From the calculated results, it is found that the plasma arc was compressed a second time by the keyhole. This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole, while the temperature field is impacted slightly. Finally, the observational and metallographic experiments are conducted, and the shapes of plasma arc and fusion line agree with the simulated results generally.  相似文献   

6.
In this paper, the laser spot diameter and its intensity distribution are measured with a scanning pinhole, and the keyhole shapes are observed using a specially designed setup in laser deep penetration welding of glass GG17. Based on the above experimental results, the effects of the following factors on the keyhole shapes are studied: the laser spot diameter and its intensity distribution, defocus, welding speed and inverse Bremsstrahlung absorption of the plasma.  相似文献   

7.
Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.  相似文献   

8.
万瓦级光纤激光焊接过程中小孔内外等离子体研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李时春  陈根余  周聪  陈晓锋  周宇 《物理学报》2014,63(10):104212-104212
为了进一步深入了解超高功率光纤激光深熔焊接过程中等离子体特征,试验拍摄了深熔小孔内外等离子体形态,并采用光谱仪检测分析了光纤激光致等离子体光谱信号.利用检测得到的等离子体光谱信号,计算研究了等离子体的电子温度、电子密度、电离度以及等离子体压力特征,并分析了在小孔内不同深度处及孔外等离子体的变化规律.结果表明,孔内等离子体呈现不均匀分布特征,孔外金属蒸气远多于等离子体.等离子体光谱分析显示,光纤激光致等离子体辐射出的谱线较少,即电离程度较低.进一步的计算结果同样证实了光纤激光致等离子体处于弱电离状态,但等离子体电子密度仍然处于较高水平,且等离子体瞬态压力可达到数百个大气压.  相似文献   

9.
In laser remote welding using a scanner, high-speed welding can be achieved by using a 6-axial robot and a galvanometric mirror. In this system, because the laser projection point changes depending on the mirror's position, coaxial monitoring is required to track welding phenomena.This paper presents coaxial monitoring of the keyhole generated by an Yb:YAG laser beam during laser lap welding of steel and Al sheets. A coaxial image camera and a coaxial illumination laser are integrated into the proposed monitoring system. The areas of the keyhole and the full penetration hole were calculated by image processing, and their behaviours were investigated under various welding conditions. The keyhole was monitored using various band-pass filters and a coaxial illumination laser. Adequate filters were suggested for steel and Al alloy welding.  相似文献   

10.
大功率光纤激光焊焊缝跟踪偏差红外检测方法   总被引:3,自引:0,他引:3       下载免费PDF全文
精确控制激光束使其始终对准并跟踪焊缝是保证激光焊接质量的前提.针对大功率(激光功率10 kW)光纤激光焊接304型不锈钢紧密对接焊缝(间隙为0-0.1 mm),研究一种基于红外热像的焊缝跟踪偏差检测新方法. 采用红外传感高速摄像机摄取焊接区域熔池红外动态热像,分析激光束对准和偏离焊缝中心时的熔池温度分布和红外辐射特性,以熔池匙孔形变参数和热堆积效应参数作为激光束与焊缝中心偏差检测特征值,通过图像识别技术研究和分析特征值与焊缝偏差之间的关系. 激光焊接试验结果表明,熔池匙孔形变参数和热堆积效应参数与焊缝偏差 关键词: 大功率光纤激光焊 焊缝跟踪偏差 红外热像 检测  相似文献   

11.
To address the problem of the zinc being easily gasified in laser welding of galvanized steel, laser welding of a zinc “sandwich” sample was performed to experimentally investigate the behavior and characteristics of the zinc inside and outside the keyhole, including the observation of the keyhole, the zinc vapor and zinc plasma, and the calculation of the electron temperature of the zinc plasma. Based on the principle of imaging amplification, the detected multi-points can be located precisely in order to study the distribution of the electron temperature of the zinc plasma. The results show that the zinc behavior played an important role in the formation of the weld-joint and the zinc plasma altered the energy distribution at the top of the keyhole whose diameter has been enlarged in the welding process. For both continuous-wave laser and pulsed laser welding of zinc “sandwich” sample, the average electron temperature of the zinc keyhole plasma was higher than that of the zinc plasma plume outside the keyhole. In the welding process, the continuous wave laser with higher input energy results in higher position of the zinc plasma with higher electron temperature above the sample surface. More zinc vapor resulted in a higher average electron temperature of the plasma.  相似文献   

12.
Using a specially designed experimental setup and properly choosing the sample material and the process parameters, we obtained a clear stable keyhole with a high-speed camera. On the basis of the actual keyhole profile, a conduction model with a cylindrical surface heat source has been developed under the assumption of the keyhole per thin layer being cylindrical. The model is numerically solved by the finite-difference method, the temperature field around the keyhole and the heat flux lost on the keyhole wall can be obtained. The effects of such factors as the shape and the size of the keyhole, the welding speed on the shape of the melt pool are studied. By comparing the laser intensity absorbed on the keyhole walls with the heat flux lost there, the mechanism of energy balance on the keyhole walls was investigated.  相似文献   

13.
Keyhole shapes are observed experimentally by two high-speed cameras from two perpendicular directions in high-speed laser welding of glass. From the obtained keyhole pictures, it can be seen that in high-speed deep penetration laser welding, the keyhole is not only seriously bent in the direction opposite to that of welding speed, but also elongated along the direction of the welding speed. Based on the so-obtained keyhole photograph, the keyhole profiles in both the symmetric plane and its perpendicular plane (i.e., the cross-section plane) are determined by the method of polynomial fitting. Then, under the assumption of elliptical cross-section of the keyhole at each keyhole depth, a 3D bending keyhole is reconstructed, the behavior of focused Gaussian laser beam in the keyhole is analyzed by tracing a ray of light using geometrical optics theory. Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. In determining the distribution of laser intensity on the keyhole wall, the bending of the keyhole plays the dominant role, elongation of the keyhole plays just a minor role. Because of the bending of the keyhole, not all the keyhole wall can be irradiated directly by laser beam. The absorbed laser intensity cannot be uniformly distributed on the keyhole wall even after multiple reflections. The keyhole wall absorbs laser intensity mainly on the small area near the front keyhole wall. Recoil pressure plays a dominant role in forming a keyhole and keeping it open.  相似文献   

14.
The angle-dependent absorption of laser beams at metal surfaces is described by the Fresnel-equations. During keyhole laser welding the essential interaction takes place at very striping angles of incidence of the order of 1-8 degrees at the front of the vapour capillary, called the keyhole. For a smooth vapour capillary, laser beams with a wavelength of about 1 μm operate in a Fresnel-regime where the absorptance increases with the angle of incidence at the wall, towards the weak Brewster-angle maximum. In contrast, for 10 μm-lasers high absorptance around the more pronounced Brewster-angle peak takes place. From high speed imaging keyhole surface waves were observed. Mathematical modelling of the laser-keyhole interaction demonstrates that already relatively little waviness of the melt surface at the keyhole strongly modulates the angles of incidence and in turn the Fresnel-absorption due to varying angles of incidence, soon also leading to shadow zones. Due to this local variation of the angle of incidence the absorptance tends towards the angle-averaged value, with the consequence that for 1 μm-lasers the direct absorptance and in turn the penetration depth increases, particularly at low welding speed, while for 10 μm-lasers it generally decreases.  相似文献   

15.
This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.  相似文献   

16.
Low-power laser/arc hybrid welding process of magnesium alloy shows that the weld capability of tungsten-inert-gas arc is improved under the action of laser pulses. The effect of laser pulse on arc plasma is analyzed by studying the plasma spectra, plasma shapes, and arc voltage in this paper. On the one hand, laser pulse attracts arc plasma to laser keyhole and improves the stability of arc plasma; on the other hand, laser pulse expands the arc plasma and concentrates the electric conducting route of arc plasma. All these increase the output power and energy density of arc plasma, so the welding penetration is improved. In addition, laser pulses are controlled to act on the negative wave of alternating-current arc (the target metal has negative polarity) in hybrid welding process to improve the stability of arc plasma and weld penetration.   相似文献   

17.
An actual keyhole is captured by a high-speed camera during deep penetration laser welding of aluminum alloy 6016. With the help of spectrograph, plasma spectra are acquired, and then after Abel transformation, electron temperature is calculated. Through Lorenz nonlinear fitting, the FWHM of Stark broadening lines is obtained to compute electron density. To know more about the mechanism of deep penetration laser welding, both the effect of Fresnel absorption and inverse bremsstrahlung absorption of plasma on the laser power distribution is considered. Results indicate that electron temperature is very unstable in the keyhole which has a declining tendency in the radius direction, electron density increases in the depth direction while it does not change too much along radius. Laser intensity absorbed on the keyhole wall through Fresnel absorption is hardly uniform and distributes mainly on the front wall and the bottom of keyhole wall, and inverse bremsstrahlung absorption of keyhole plasma plays a dominant role in absorbing laser power compared with Fresnel absorption.  相似文献   

18.
The vibrations behavior analysis is an essential step in the mechanical design process. Several methods such as analytical modelling, numerical analysis and experimental measurements can be used for this purpose. However, the numerical or analytical models should be validated through experimental measurements, usually expensive. This paper introduces an inexpensive smartphone as an accurate, non-intrusive vibrations’ behavior measurement device. An experimental measurement procedure based on the video processing method is presented. This procedure allows the measurement of the natural frequencies and the mode shapes of a vibrating structure, simply by using a smartphone built-in camera. The experimental results are compared to those obtained using an accurate analytical model, where the natural frequencies error is less than 2.7% and the modal assurance criterion is higher than 0.89. In order to highlight the obtained results, a comparison has been done using a high quality and high frame per second (fps) camera-based measurement of material properties. Since the highest recovered natural frequency and its associated mode shape depend on the frame per second rate of the recorded video, this procedure has great potential in low frequencies problems such as for big structures like buildings and bridges. This validated technique re-introduces the personal smartphone as an accurate inexpensive non-contacting vibration measurement tool.  相似文献   

19.
熔透检测是实现高功率激光焊接质量在线控制的重要环节,但由于介观尺度下的低辐值熔透特征信号产生于激光匙孔底部被匙孔喷射物质和周围干扰信号完全掩盖,熔透状态难以被直接获取,常规检测多以间接测量为主。将光谱透视技术、红外显微成像技术、光电传感技术及空间定位提取技术相结合,提出一种激光焊接熔透特征信号同轴增效提取方法。以高功率激光在匙孔内壁激发的荧光辐射源作为直接检测信号,利用不同发光体的谱段特性在红外谱段有效分离并抑制激光焊接匙孔上方的等离子体、金属蒸汽焰、粒子团簇等强干扰信号,使红外荧光信号得到有效增强,实现光谱透视显像效果。同时采用自行研制的激光焊接同轴显微光路系统,利用红外显微成像原理提取到匙孔内壁受激辐射荧光的红外显微实像。并以此为基础对高功率激光焊接熔透状态与匙孔内部影像特征进行关联研究,发现与熔透状态直接相关的低辐射值特征现象及特征区域的存在。通过视觉辅助定位调节和熔透特征位置试验矫正等寻位方式,依次提高定位精度,直至将传感器光电感应芯片高精度定位至荧光辐射实像中的熔透特征区域。由此通过光谱透视-显微成像-介观寻位萃取的逐层光学分离方式,实现了对匙孔熔透特征数据的精准提取和最大化增强。试验结果表明,基于多种光谱及光学处理技术复合应用的大功率固体激光焊熔透特征同轴增效提取方法对激光熔透特征信号增强效果显著,可作为一种新型的高功率激光焊接熔透在线检测手段。  相似文献   

20.
In the present paper, the vibration of a cylindrical piezoelectric transducer induced by applied voltage, which can be used as the stator transducer of a cylindrical micromotor, is studied based on shell theory. The transducer is modelled as a thin elastic cylinder. The properties of the vibration modes of the transducer, such as mode frequencies and amplitude ratios of the mode shapes, are determined following Galerkin method. The response of the transducer under the four electric sources with 90° phase difference is then obtained by the modal summation method. With the results, the performance of the transducer under the electric sources can be estimated. The present work provides a general and precise theoretical modelling on the dynamical movement of the transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号