首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory of linear piezoelectricity is applied to develop an anti-plane crack growth rate equation of a finite crack in a piezoelectric ceramic body with finite width. Plastic zone is assumed to be confined to a sheet ahead of both crack edges similar to the strip model for in-plane loading. The procedure consists of reducing a system of dual integral equations to a Fredholm integral equation of the second kind. The accumulated plastic displacement criterion is used for developing a solution for the crack growth rate. Numerical values of crack growth rate are obtained and the results are displayed graphically to exhibit the electroelastic interactions.  相似文献   

2.
The weight function in fracture mechanics is the stress intensity factor at the tip of a crack in an elastic material due to a point load at an arbitrary location in the body containing the crack. For a piezoelectric material, this definition is extended to include the effect of point charges and the presence of an electric displacement intensity factor at the tip of the crack. Thus, the weight function permits the calculation of the crack tip intensity factors for an arbitrary distribution of applied loads and imposed electric charges. In this paper, the weight function for calculating the stress and electric displacement intensity factors for cracks in piezoelectric materials is formulated from Maxwell relationships among the energy release rate, the physical displacements and the electric potential as dependent variables and the applied loads and electric charges as independent variables. These Maxwell relationships arise as a result of an electric enthalpy for the body that can be formulated in terms of the applied loads and imposed electric charges. An electric enthalpy for a body containing an electrically impermeable crack can then be stated that accounts for the presence of loads and charges for a problem that has been solved previously plus the loads and charges associated with an unsolved problem for which the stress and electric displacement intensity factors are to be found. Differentiation of the electric enthalpy twice with respect to the applied loads (or imposed charges) and with respect to the crack length gives rise to Maxwell relationships for the derivative of the crack tip energy release rate with respect to the applied loads (or imposed charges) of the unsolved problem equal to the derivative of the physical displacements (or the electric potential) of the solved problem with respect to the crack length. The Irwin relationship for the crack tip energy release rate in terms of the crack tip intensity factors then allows the intensity factors for the unsolved problem to be formulated, thereby giving the desired weight function. The results are used to derive the weight function for an electrically impermeable Griffith crack in an infinite piezoelectric body, thereby giving the stress intensity factors and the electric displacement intensity factor due to a point load and a point charge anywhere in an infinite piezoelectric body. The use of the weight function to compute the electric displacement factor for an electrically permeable crack is then presented. Explicit results based on a previous analysis are given for a Griffith crack in an infinite body of PZT-5H poled orthogonally to the crack surfaces.  相似文献   

3.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

4.
The dynamic theory of antiplane piezoelectricity is applied to solve the problem of a line crack subjected to horizontally polarized shear waves in an arbitrary direction. The problem is formulated by means of integral transforms and reduced to the solution of a Fredholm integral equation of the second kind. The path-independent integral G is extended here to include piezoelectric effects, and is evaluated at the crack tip to obtain the dynamic energy release rate. Numerical calculations are carried out for the dynamic stress intensity factor and energy release rate. The material is piezoelectric ceramic.  相似文献   

5.
Summary  The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack in a piezoelectric strip. Received 14 August 2001; accepted for publication 24 September 2002 The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported by the National Natural Science Foundation of China under Grant 70272043.  相似文献   

6.
The axisymmetric problem of a penny-shaped crack embedded in an infinite three-dimensional (3D) piezoelectric body is considered. A general formulation of Coulomb traction on the crack surfaces can be obtained based on thermodynamical considerations of electromechanical systems. Three-dimensional electroelastic solutions are derived by the classical complex potential theory when Coulomb traction is taken into account and the poling direction of piezoelectric body is perpendicular to the crack surfaces. Numerical results show that the magnitude of Coulomb tractions can be large, especially when a large electric field in connection with a small mechanical load is applied. Unlike the traditional traction-free crack model, Coulomb tractions induced by an applied electric field influence the Mode I stress intensity factor for a penny-shaped crack in 3D piezoelectric body. Moreover, compared to the current model, the traditional traction-free crack model always overestimates the effect of the applied electric load on the field intensity factors and energy release rates, which has consequences for 3D piezoelectric fracture mechanics.  相似文献   

7.
The transient response of a piezoelectric strip with an eccentric crack normal to the strip boundaries under applied electromechanical impacts is considered. By using the Laplace transform, the mixed initial-boundary-value problem is reduced to triple series equations, then to a singular integral equation of the first kind by introducing an auxiliary function. The Lobatto–Chebyshev collocation technique is adopted to solve numerically the resulting singular integral equation. Dynamic field intensity factors and energy release rate are obtained for both a permeable crack and an impermeable crack. The effects of the crack position and the material properties on the dynamic stress intensity factor are examined and numerical results are presented graphically.  相似文献   

8.
The electroelastic response of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an elastic matrix is investigated in this study. Fourier and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. They are then reduced to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor, energy release rate and energy density factor for piezoelectric composites are obtained to show the influence of applied electric fields.  相似文献   

9.
In this paper, two different fracture criteria are applied to determine the crack trajectory or angle of crack propagation in test specimens containing inclined cracks emanating from open holes. Also, different crack growth rate models are assumed for each criterion. The maximum principal stress criterion is used with a crack growth-rate equation based on an effective stress intensity factor. The strain energy density criterion is used with a crack growth-rate equation corresponding to an effective strain energy density factor. The crack growth-rate models for each criterion were constructed using unpublished fatigue crack growth data for 2024-T3 aluminum.  相似文献   

10.
The theory of linear piezoelectricity is applied to solve the anti-plane shear problem of a piezoelectric layer sandwiched by two dissimilar homogeneous materials with a crack at the interface. Both mechanical and electrical loads are applied to the piezoelectric laminate. By the use of Fourier transforms, the mixed boundary value problem is reduced to a singular integral equation which is solved numerically to determine the stress intensity factors for several layered piezoelectric media, and the results are presented in graphical form.  相似文献   

11.
Closed-form solution for two collinear cracks in a piezoelectric strip   总被引:2,自引:0,他引:2  
Under the permeable electric boundary condition, the problem of two collinear anti-plane shear cracks lying at the mid-plane of a piezoelectric strip is investigated. By using the Fourier transform, the associated problem is reduced to a singular integral equation. Solving the resulting equation analytically, the electro-elastic field intensity factors and energy release rates at the inner and outer crack tips can be determined in explicit form. Numerical results for PZT-5H piezoelectric ceramic are also presented graphically. The results reveal that the effect of electric field on crack growth in piezoelectric materials is dependent on applied elastic displacement.  相似文献   

12.
Summary  The dynamic response of an interface crack between two dissimilar piezoelectric layers subjected to mechanical and electrical impacts is investigated under the boundary condition of electrical insulation on the crack surface by using the integral transform and the Cauchy singular integral equation methods. The dynamic stress intensity factors, the dynamic electrical displacement intensity factor, and the dynamic energy release rate (DERR) are determined. The numerical calculation of the mode-I plane problem indicates that the DERR is more liable to be the token of the crack growth when an electrical load is applied. The dynamic response shows a significant dependence on the loading mode, the material combination parameters as well as the crack configuration. Under a given loading mode and a specified crack configuration, the DERR of an interface crack between piezoelectric media may be decreased or increased by adjusting the material combination parameters. It is also found that the intrinsic mechanical-electrical coupling plays a more significant role in the dynamic fracture response of in-plane problems than that in anti-plane problems. Received 4 September 2001; accepted for publication 23 July 2002 The work was supported by the National Natural Science Foundation under Grant Number 19891180, the Fundamental Research Foundation of Tsinghua University, and the Education Ministry of China.  相似文献   

13.
The theory of linear piezoelectricity is applied to solve the antiplane electroelastic problem of an orthotropic piezoelectric ceramic strip with a finite crack, which is situated symmetrically and oriented in a direction normal to the edges of the strip. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations. They are then reduced to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate for some piezoelectric ceramics are obtained and the results are displayed numerically to exhibit the electroelastic interactions.  相似文献   

14.
通过对耦合的波动方程和方程解耦,用自模拟方法研究了压电材料中反平面裂纹的自相似扩展问题。研究表明:对反平面问题,介质内的耦合场与裂纹扩展速度有关,在裂纹尖端有r^-1/2阶的奇异性;动态应力强度因子与电位称载荷有关,与静态结论不同;电位移强度因子与机械载 荷无关,与静态结果的表达形式一致。  相似文献   

15.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

16.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

17.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

18.
The problem of an antiplane crack situated in the interface of two bonded dissimilar graded piezoelectric half-spaces is considered under the permeable crack assumption. The mechanical and electrical properties of the half-spaces are considered for a class of functional forms for which the equilibrium equation has analytic solutions. By using an integral transform technique, the problem is reduced to dual integral equations which are transformed into a Fredholm integral equation by introducing an auxiliary function. The stress intensity factors are obtained in explicit form in terms of auxiliary functions. By solving the Fredholm integral equation numerically, the numerical results for stress intensity factors are obtained which have been displayed graphically to show the influence of the graded piezoelectric materials.  相似文献   

19.
The problem of collinear periodic cracks in an infinite piezoelectric body is studied. Effect of saturation strips at the crack-tips is taken into account. By means of the Stroh formalism and the conformal mapping technique, the general periodic solutions for collinear cracks are obtained. The stress intensity factors and the size of saturation strips are derived analytically, and their dependencies on the ratio of the periodicity on the half-length of the crack are analyzed in detail. Numerical results show the following two facts. (1) When h/l>4.0, the stress intensity factors become almost identical to those of a single crack in an infinite piezoelectric body. This indicates that the interaction between cracks can be ignored in establishing the criterion for the crack initiation in this case. (2) The speed of the saturation strip size of periodic cracks approaching that of a single crack depends on the electric load applied at infinity. In general, a large electric load at infinity is associated with a slow approaching speed.  相似文献   

20.
用压电材料进行损伤鉴别的理论与数值分析   总被引:1,自引:0,他引:1  
对压电材料用于损伤监测的理论和数值分析做了一些研究。首先,设计了一种用压电材料进行损伤监测的模型。然后,对这个模型进行分析,找出简单有效的解答办法,将求解过程分解为断裂力学分析和压电分析两部分,并通过适当的假设,进行了详细的理论推导。通过正电有限元程序进行仿真计算,将数值计算结果与理论解进行比较以验证提出理论的正确性,并分析得到了裂纹参数与压电层表面电势变化之间的关系和普通弹性材料泊松比对波峰参数的影响。最后,用提出的方法验算了两个例题。从结果来看,理论结果和数值结果非常接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号