首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
Debarati Bhattacharya 《Pramana》2000,55(5-6):823-833
Emission plasma plume generated by pulsed laser ablation of a lithium solid target by a ruby laser (694 nm, 20 ns, 3 J) was subjected to optical emission spectroscopy: time and space resolved optical emission was characterised as a function of distance from the target surface. Propagation of the plume was studied through ambient background of argon gas. Spectroscopic observations can, in general, be used to analyse plume structure with respect to an appropriate theoretical plasma model. The plume expansion dynamics in this case could be explained through a shock wave propagation model wherein, the experimental observations made were seen to fit well with the theoretical predictions. Spectral information derived from measurement of peak intensity and line width determined the parameters, electron temperature (T e) and electron number density (n e), typically used to characterise laser produced plasma plume emission. These measurements were also used to validate the assumptions underlying the local thermodynamic equilibrium (LTE) model, invoked for the high density laser plasma under study. Some interesting results pertaining to the analysis of plume structure and spatio-temporal behaviour of T e and n e along the plume length will be presented and discussed.  相似文献   

2.
Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 × 103-104 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 109-1010 cm−3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.  相似文献   

3.
The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target.  相似文献   

4.
We present the optical emission studies of sulphur (S) plasma generated by the first (1064 nm) and second (532 nm) wavelengths of a Q-switched Nd:YAG laser. The target material was placed in front of laser beam in air at atmospheric pressure. The experimentally observed line profiles of neutral sulphur have been used to extract the electron temperature (T e ) using the Boltzmann plot method, whereas the electron number density (N e ) has been determined from the Stark broadening. The electron temperature is calculated by varying, distance from, the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of number density as a function of laser irradiance as well as its variation with distance from the target surface. It is observed that electron temperature and electron number density increases as laser irradiance is increased.  相似文献   

5.
In the present work, we present the spatial evolution of the copper plasma produced by the fundamental harmonic (1064 nm) and second harmonic (532 nm) of a Q-switched Nd:YAG laser. The experimentally observed line profiles of neutral copper have been used to extract the electron temperature using the Boltzmann plot method, whereas, the electron number density has been determined from the Stark broadening. Besides we have studied the variation of electron temperature and electron number density as a function of laser energy at atmospheric pressure. The Cu I lines at 333.78, 406.26, 465.11 and 515.32 nm are used for the determination of electron temperature. The relative uncertainty in the determination of electron temperature is ≈10%. The electron temperature calculated for the fundamental harmonic (1064 nm) of Nd:YAG laser is 10500–15600 K, and that for the second harmonic (532 nm) of Nd:YAG laser is 11500–14700 K at a Q Switch delay of 40 μs. The electron temperature has also been calculated as a function of laser energy from the target surface for both modes of the laser. We have also studied the spatial behavior of the electron number density in the plume. The electron number densities close to the target surface (0.05 mm), in the case of fundamental harmonic (1064 nm) of Nd:YAG laser having pulse energy 135 mJ and second harmonic (532 nm) of Nd:YAG laser with pulse energy 80 mJ are 2.50×1016 and 2.60×1016 cm−3, respectively.  相似文献   

6.
We present the optical emission characteristics of the sodium plasma produced at the surface of sodium nitrate (NaNO3) also known as Chile saltpeter. We used a Q-switched Nd:YAG (Quantel Brilliant) pulsed laser having a pulse duration of 5?ns and 10?Hz repetition rate which is capable of delivering 400?mJ at 1064?nm and 200?mJ at 532?nm. The target material was placed in front of laser beam in air (atmospheric pressure). The experimentally observed line profiles of neutral sodium have been used to extract the electron temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadening. The electron temperature is calculated by varying the distance from the target surface along the line of propagation of the plasma plume and also by varying the laser irradiance. Besides, we have studied the variation of number density as a function of laser irradiance as well as its variation with the distance from the target surface. It is observed that electron temperature and electron number density increase as the laser irradiance is increased.  相似文献   

7.
We report results from optical interferometric probing of a laser generated Zn plasma plume. The experiment was performed in a vacuum and O2 rich environments where the background pressure of O2 was maintained at 1000 Pa and the results from both regimes are compared. The focus of our work is very much on the early stages in the life of the plasma plume which remains, to date, a largely unexplored area of study, at least in the pulsed laser deposition research domain. It was found that the electron density profile normal to the target is different in the background gas at early times (∼30 ns) compared to that of the vacuum case. At later times (∼80 ns) both profiles have a very similar shape. We also observe the formation of a shock wave at the plasma-gas interface shortly after plasma breakdown (<15 ns).  相似文献   

8.
The dynamics and the spectral kinetic characteristics of the plume emerging in the vicinity of graphite targets, pressed pellets consisting of zirconium oxide powder stabilized with yttrium (YSZ) and yttrium-aluminum oxides with neodymium (YAO:Nd), and single-crystal YAG:Cr are studied. The targets are irradiated in air at room temperature using a repetitively pulsed CO2 laser with a wavelength of 10.6 μm, a peak power of up to 9 kW, a pulse energy of 1.69 J, and a pulse duration of 330 μs at a level of 0.1. The plume propagates normally to the target surface at an angle of 45° relative to the laser radiation. The spectral kinetic characteristics of the plume luminescence are discretely measured along the entire length. It is demonstrated that the plumes of all targets (except for the single-crystal YAG:Cr) represent the flows of a weakly nonequilibrium gas plasma with a temperature of 10 kK (graphite) and 3.1–4.7 kK (YSZ and YAO:Nd pressed pellets). The plume size is determined by the peak power of the laser pulse. The luminescence of the two-atom radicals (C2 in graphite; ZrO and YO in YSZ; and YO, AlO, and NdO in YAO:Nd) dominates in all of the plumes. A single radical (YO) and the spectral lines of atoms and atomic ions are observed in the YAG:Cr plume. A relatively high temperature of the graphite plume is maintained owing to the energy of the exothermic reaction involving the association of carbon atoms and the energy of the vibrationally excited molecules resulting from this reaction. Original Text ? Astro, Ltd., 2006.  相似文献   

9.
We present optical emission characteristics of the titanium plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser using laser induced breakdown spectroscopy (LIBS). The experimentally observed line profiles of neutral titanium (Ti I) have been used to extract the electron temperature (T e ) using the Boltzmann plot method. The electron number density (N e ) is calculated using the Stark broadening profile of 368.73 nm spectral line. Beside we have studied the spatial variation of electron temperature and number density as a function of laser energy for titanium plasma by placing the target material in air (at atmospheric pressure). We have determined the electron temperature and the electron number density along the axial position of the plasma plume.  相似文献   

10.
The electron temperature of the plasma formed during pulsed laser deposition of Bi-Sr-Ca-Cu-O target was measured using Langmuir probe. The main parameters of the experiment were as follows: The distance of the probe from the target was in the range of (4-6) mm, the basic working pressure was 2×10–3 Pa and the planar pulse energy density of laser beam was approximately 8 J/cm2. The obtained values of electron temperature were in the range of (1.0-2.5) eV. Presented results are discussed from the point of view of different theories of plasma splitting.  相似文献   

11.
Emission spectra and the energy distribution of the excited-state population density of atoms and ions in erosion laser plasma from CuInS2 with various crystal-structure orderings are analyzed. It is shown that increased ordering of the target crystal structure causes the excited-state energies of indium atoms generated in the laser erosion plume to increase and that sulfur atoms always emit only in transitions from highly excited states. The ratio of relative ion concentrations in the laser plasma plume is Cu+/In+/S+ = 0.3/0.08/2, which corresponds neither to the atomic ratio of Cu/In/S (1/1/2) in the target nor to the ratio of ionization energies. The results are explained by recombination processes for ions and by the atomization specifics of the CuInS2 target exposed to long-wavelength radiation. The atomization consists essentially of dissociative processes expressed by CuInS2 → CuInS + S and CuInS2 → Cu + InS + S. The electron temperature of polycrystal (single-crystal) plasma at a distance of 1 mm from the target is 0.3 eV (0.4 eV) for atoms and 1.3 eV (2.7 eV) for ions and varies negligibly for plasma up to a distance of 7 mm from the target. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 217–223, March–April, 2008.  相似文献   

12.
13.
Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm2 to 8 J/cm2. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity.  相似文献   

14.
The infrared emission spectrum of the plume produced by KrF excimer laser ablation of polyimide films in air and in He was measured in the 680 to 1580 cm–1 wavenumber range. Using 400 mJ/cm2 laser pulses of 248 nm and 35 ns duration yielded a strong emission band characteristic of thev 2 transitions of hot HCN molecules. Band counters calculations were carried out of thev 2 emission expected from HCN in thermal equilibrium at various temperatures. They indicate that except for a slight deviation of the measured data from thermal equilibrium, the best fit of the observed results is obtained at a plume temperature of 2250±150K.  相似文献   

15.
We present the optical emission spectroscopic studies of the Tin (Sn) plasma, produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q switched Nd: YAG pulsed laser having pulse duration of 5 ns and 10 Hz repetition rate which is capable of delivering 400 mJ at 1064 nm, and 200 mJ at 532 nm using Laser Induced Breakdown Spectroscopy (LIBS). The laser beam was focused on target material by placing it in air at atmospheric pressure. The experimentally observed line profiles of four neutral tin (Sn I) lines at 231.72, 248.34, 257.15 and 266.12 nm were used to extract the electron temperature (Te) using the Boltzmann plot method and determined its value 6360 and 5970 K respectively for fundamental and second harmonics of the laser. Whereas, the electron number density (Ne) has been determined from the Stark broadening profile of neutral tin (Sn I) line at 286.33 nm and determined its value 5.85 x 1016 and 6.80 x 1016cm–3 for fundamental and second harmonics of the laser respectively. Both plasma parameters (Te and Ne) have also been calculated by varying distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The pulsed laser ablation of chemical vapor deposition (CVD) diamond and graphite samples in vacuum has been investigated by the use of an ArF excimer laser operating at 5=193 nm. The composition and propagation of both ablation plumes has been probed via wavelength and spatially and temporally resolved measurements of the plume emission and found to be very similar. Electronically excited C atoms and C+ and C2+ ions are identified among the ablated material. Plume expansion velocities are estimated from time-gated imaging of specific C and C+ emissions. Langmuir probe measurements provide further insight into the propagation of the charged components in both ablation plumes. Diamond-like carbon (DLC) films grown by 193-nm laser ablation of both target materials on Si substrates maintained at room temperature have been investigated by laser Raman spectroscopy (325 nm and 488 nm excitation) and by both optical and scanning electron microscopy, and their field emission characteristics investigated. Again, similarities outweigh the differences, but DLC films grown from ablation of the diamond target appear to show steeper I/V dependencies once above the threshold voltage for field emission.  相似文献   

17.
Pulsed laser depositions of PLZT thin films were performed using an Nd:YAG (1064 nm) laser. The growths took place in vacuum or in an oxygen background. Room temperature and 500 °C were the used substrate temperatures. The X-ray diffraction analysis revealed a preferential crystallographic orientation in the films grown at room temperature in vacuum. Such result is discussed. The velocity distribution functions of the species in the plasma plume were obtained from a time of flight study using optical emission spectroscopy. The maximums of these distributions functions fall around 106 cm/s, equivalent to an energy range of 18-344 eV. Ionic species of heavy elements (like lead) achieved higher velocities than other lighter species. This result is linked to the creation of an accelerating spatial charge and to the thermal nature of the target material extraction that allows some elements to be released first than others. Chemical state variations of the elements present in the films were analyzed. Under these different growing conditions, lead chemical states varied the most.  相似文献   

18.
We present the optical emission characteristics of the barium plasma produced at the surface of barium hydroxide Ba(OH)2, also known as baryta, generated by the first harmonic (1,064 nm) of a Q-switched Nd:YAG laser. The laser beam was focused on target material by placing it in air at atmospheric pressure. The experimentally observed line profiles of neutral barium have been used to extract the electron temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadening. The electron temperature is calculated by varying distance from the target surface along the line of propagation of plasma plume and also by varying the laser energy. Besides, we have studied the variation of number density as a function of laser energy as well as its variation with distance from the target surface. It is observed that electron temperature and electron number density increase as laser energy increases.  相似文献   

19.
The propagation of LaMnO3 laser ablation plume in oxygen background has been investigated using fast photography of overall visible plume emission and time-resolved optical emission spectroscopy. The plume expansion was studied with ambient oxygen pressures ranging from vacuum level to 100 Pa. Free-expansion, splitting, sharpening and stopping of the plume were observed at different pressures and time delays after the laser pulse. Time-resolved optical emission spectroscopy showed that oxides are mainly formed through reaction of the atomic species ablated from the target with oxygen in the gas-phase. These reactions mainly affect the content of lanthanum oxide in the plume, while emission of manganese oxide is barely observed in all the range of pressure investigated.  相似文献   

20.
The fs laser facility in Bordeaux, delivering an intensity of 1018 W/cm2 at normal incidence on thin foils, has been used to induce forward electron and ion acceleration in target-normal-sheath-acceleration (TNSA) regime. Micrometric thin foils with different composition, thickness, and electron density, were prepared to promote the charge particle acceleration in the forward direction. The plasma electron and ion emission monitoring were performed on-line using SiC semiconductor detectors in time-of-flight (TOF) configuration and gaf-chromics films both covered by thin absorber filters. The experiment has permitted to accelerate electrons and protons. A special attention was placed to detect relativistic hot electrons escaping from the plasma and cold electrons returning to the target position. The electron energies of the order of 100 keV and of about 1 keV were detected as representative of hot and cold electrons, respectively. A high cold electron contribution was measured using low-contrast fs laser, while it is less evident using high-contrast fs lasers. The charge particle acceleration depends on the laser parameters, irradiation conditions, and target properties, as will be presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号