首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroglycerin (NTG), an important cardiovascular agent, has been shown recently to activate matrix metalloproteinase‐9 (MMP‐9) in biological systems, possibly leading to destabilization of atherosclerotic plaques. The chemical mechanism for this activation, particularly on the cysteine switch of the pro‐form of MMP‐9 (proMMP‐9), has not been investigated and was examined here using nano‐flow liquid chromatography coupled to mass spectrometry. In order to obtain high sequence coverage, two orthogonal enzymes (trypsin and GluC) were employed to digest the protein in parallel. Two complementary activation methods, collision‐induced dissociation (CID) and electron‐transfer dissociation (ETD), were employed for the identification of various modifications. A high‐resolution Orbitrap analyzer was used to enable confident identification. Incubation of NTG with proMMP‐9 resulted in the formation of an unstable thionitrate intermediate and oxidation of the cysteine switch to sulfinic and irreversible sulfonic acid derivatives. The unstable thionitrate modification was confirmed by both CID and ETD in the proteolytic peptides produced by both trypsin and GluC. Incubation of proMMP‐9 with diethylenetriamine NONOate (a nitric oxide donor) led to sulfonic acid formation, but no observable sulfinic acid modification. Extensive tyrosine nitration by NTG was observed at Tyr‐262, in close proximity to an oxidized Cys‐256 of proMMP‐9. The intramolecular interaction between these two residues toward NTG‐induced oxidation was examined using a synthesized peptide representing the sequence in this domain, PWCSTTANYDTDDR, and the modification status was compared against an analog in which Cys was substituted by Ala. We observed a thionitrate product, extensive Cys oxidative modifications and enhanced tyrosine nitration with the Cys peptide but not with the Ala analog. Our results indicated that neighboring Cys and Tyr residues can facilitate each other's oxidation in the presence of NTG. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
By an example of the iron cysteamine nitrosyl complex {Fe2[S(CH2)2NH3]2(NO)4}SO4··2.5H2O (CAC), it was shown for the first time that the hydrolysis of this NO donor in the presence of ferrocytochrome c (cyt c 2+) affords the iron nitrosyl complex NO-cyt c 2+, which serves as the NO depot. The rate constant of NO release from CAC was determined from the kinetics of the formation of NO-cyt c 2+. At pH 3.0 the rate constant is (2.7±0.1)·10−3 s−1. Ferrocytochrome c produces a less stabilizing effect on CAC than deoxyhemoglobin (Hb). Thus in the presence of cyt c 2+, the reaction is completed in 1 h, whereas NO is released from a solution of CAC (2·10−4 mol L−1) in the presence of Hb during 40 h. The previously unknown stabilization of iron nitrosyl complexes by hemoglobin was found.  相似文献   

3.
The reduction of nitrite by deoxygenated hemoglobin chains has been implicated in red cell-induced vasodilation, although the mechanism for this process has not been established. We have previously demonstrated that the reaction of nitrite with deoxyhemoglobin produces a hybrid intermediate with properties of Hb(II)NO(+) and Hb(III)NO that builds up during the reaction retaining potential NO bioactivity. To explain the unexpected stability of this intermediate, which prevents NO release from the Hb(III)NO component, we had implicated the transfer of an electron from the β-93 thiol to NO(+) producing ·SHb(II)NO. To determine if this species is formed and to characterize its properties, we have investigated the electron paramagnetic resonance (EPR) changes taking place during the nitrite reaction. The EPR effects of blocking the thiol group with N-ethyl-maleimide and using carboxypeptidase-A to stabilize the R-quaternary conformation have demonstrated that ·SHb(II)NO is formed and that it has the EPR spectrum expected for NO bound to the heme in the β-chain plus that of a thiyl radical. This new NO-related paramagnetic species is in equilibrium with the hybrid intermediate "Hb(II)NO(+) ? Hb(III)NO", thereby further inhibiting the release of NO from Hb(III)NO. The formation of an NO-related paramagnetic species other than the tightly bound NO in Hb(II)NO was also confirmed by a decrease in the EPR signal by -20 °C incubation, which shifts the equilibrium back to the "Hb(II)NO(+) ? Hb(III)NO" intermediate. This previously unrecognized NO hemoglobin species explains the stability of the intermediates and the buildup of a pool of potentially bioactive NO during nitrite reduction. It also provides a pathway for the formation of β-93 cysteine S-nitrosylated hemoglobin [SNOHb:S-nitrosohemoglobin], which has been shown to induce vasodilation, by a rapid radical-radical reaction of any free NO with the thiyl radical of this new paramagnetic intermediate.  相似文献   

4.
Koppenol WH 《Inorganic chemistry》2012,51(10):5637-5641
Nitrosothiols are powerful vasodilators. Although the mechanism of their formation near neutral pH is an area of intense research, neither the energetics nor the kinetics of this reaction or of subsequent reactions have been addressed. The following considerations may help to guide experiments. (1) The standard Gibbs energy for the homolysis reaction RSNO → RS(?) + NO(?)(aq) is +110 ± 5 kJ mol(-1). (2) The electrode potential of the RSNO, H(+)/RSH, NO(?)(aq) couple is -0.20 ± 0.06 V at pH 7. (3) Thiol nitrosation by NO(2)(-) is favorable by 37 ± 5 kJ mol(-1) at pH 7. (4) N(2)O(3) is not involved in in vivo nitrosation mechanisms for thermodynamic--its formation from NO(2)(-) costs 59 kJ mol(-1)--or kinetic--the reaction being second-order in NO(2)(-)--reasons. (5) Hemoglobin (Hb) cannot catalyze formation of N(2)O(3), be it via the intermediacy of the reaction of Hb[FeNO(2)](2+) with NO(?) (+81 kJ mol(-1)) or reaction of Hb[FeNO](3+) with NO(2)(-) (+88 kJ mol(-1)). (6) Energetically and kinetically viable are nitrosations that involve HNO(2) or NO(?) in the presence of an electron acceptor with an electrode potential higher than -0.20 V. These considerations are derived from existing thermochemical and kinetics data.  相似文献   

5.
The kinetics of oxidation of L-Cysteine in aqueous HClO4 medium were studied using a one-equivalent oxidant, hexachloroiridate(IV). The reaction exhibits second-order dependence with respect to hexachloroiridate(IV) and first-order in cysteine. The rate decreases with increase in hydrogen ion concentration indicating that the zwitterionic form of cysteine is more reactive. Cysteic acid is identified as the product of oxidation. A suitable mechanism involving the formation of [IrCl6]2− – sulphur bonded intermediate is proposed. The activation parameters of the reaction are computed using the linear least squares method and the values of Ea and ΔS# are found to be 27.97±1.82 kJ mol−1 and −51.30±6.0 J K−1mol−1, respectively.  相似文献   

6.
The reaction of hemoglobin (Hb), oxyhemoglobin (HbO2), and methemoglobin (metHb) with the tetranitrosyl iron complex of the fu2-S type [Fe2(SC4H3N2)2(NO)4] (1) was studied. The reaction results in the nitrosylation of the free SH group of 93-β-cysteine in these forms of hemoglobin. The change in the Hb, HbO2, and metHb concentrations was monitored by spectrophotometry, recording the difference absorption spectra of the experimental systems with these forms of hemoglobin and the buffer containing complex 1 in the same concentration. The absorption spectra were processed to obtain the components using the MATHCAD method. The nitrosothiol concentration was determined by the Saville reaction. In a protic medium containing 3.3% DMSO, complex 1 spontaneously generates NO due to hydrolysis (k = 3.7 · 10-4 s-1). Oxyhemoglobin reacts with evolved NO to form metHb. Complex 1 reduces metHb with a high rate to yield Hb (k = 6.7 · 10-3 s-1) followed by the formation of HbNO (k = 6.5 · 10-3 s-1). Oxidized complex 1 yields NO with a higher rate than the starting complex does. The reaction of HbO2 and metHb (0.02 mmo1 L-1) with complex 1 affords nitrosothiols in micromolar concentration during 5 min, and no nitrosothiol is formed in the case of Hb.  相似文献   

7.
Neurogranin (Ng) is a neuron-specific protein kinase C (PKC) substrate, which contains four cysteine (Cys) residues. Recently, it has been shown that Ng is a redox-sensitive protein and is a likely target of nitric oxide (NO) and other oxidants [F.-S. Sheu, C.W. Mahoney, K. Seki, K.-P. Huang, Nitric oxide modification of rat brain neurogranin affects its phosphorylation by protein kinase C and affinity for calmodulin, J. Biol. Chem. 271 (1996) 22407-22413: J. Li, J.H. Pak, F.L. Huang, K.-P. Huang, N-methyl-D-aspartate induces neurogranin/RC3 oxidation in rat brain slices, J. Biol. Chem. 274 (1999) 1294-1300]. In this study, we directly examine the redox reactions between dissolved NO and Cys as well as between NO and bacterial expressed Ng in its reduced form, at concentrations approximate to the physiological levels in phosphate buffer solution (PBS) under aerobic conditions. The reaction kinetics are measured directly by our newly developed electrochemical sensor. Our sensor is based on the chemical modification of electrode with immobilized nanoparticles of transition metal palladium (Pd) which serves as catalytic centers for the electrochemical oxidation of thiol and NO selectively and quantitatively at different potentials. It detects Cys and Ng in a linear range from nano to micromolar concentration at + 450 mV, vs. a saturated calomel reference electrode (SCE), while the detection of NO at the sensor can be optimally achieved at + 700 mV (vs. SCE) with a linear current-to-concentration range of nM to microM. It thus provides a selective control to monitor two reactants independently. With this sensor as a detector, we found that (1) the oxidation of either Cys or Ng by NO is a fast reaction which reaches a near completion within 1-2 min at its physiological concentration; and (2) after the completion of reaction, NO is mostly, if not all, regenerated, an observation consistent with the reaction mechanism involving the formation of S-nitrosothiol as an intermediate. The reaction kinetics of both NO to Cys and NO to Ng implies that NO can achieve local action on cellular proteins in addition to its effect on targets located in neighboring cells via concentration-gradient-dependent diffusion.  相似文献   

8.
The tetranitrosyl iron complex with pyridine-2-yl [Fe2(SC5H4N)2(NO)4] (1) has higher NO-donating activity in 3% aqueous solutions of DMSO (pH 7.0, 25 °C) than the organic NO donor, viz., adduct of NO with diethylenetriamine (NO-adduct). The NO concentration was determined by the spectrophotometric method based on the formation of an NO complex with hemoglobin (Hb). The apparent first-order rate constants of the studied reactions are (6.15±0.6)·10−1 s−1 and (0.8±0.08)·10−1 s−1 for complex 1 and the NO-adduct, respectively, at an Hb concentration of 2·10−1 mol L−1 and the ratio [NO donor]/[Hb] = 10. The effect of Hb and [NO donor]/[Hb] ratio on the rate of NO generation from a solution of complex 1 was studied. For a fourfold decrease in the concentration of complex 1 the reaction rate constant decreases to 0.5·10−4 s−1, whereas the fourfold increase in the Hb concentration results in the stabilization of complex 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 732–736, April, 2007.  相似文献   

9.
The complex species formed between vanadium(III)-picolinic acid (HPic) and the amino acids: cysteine (H2Cys), histidine (HHis), aspartic acid (H2Asp) and glutamic acid (H2Glu) were studied in aqueous solution by means of electromotive forces measurements emf(H) at 25 °C and 3.0 mol⋅dm−3 KCl as ionic medium. Data analysis using the least-squares program LETAGROP indicates the formation of ternary complexes, whose stoichiometric coefficients and stability constant were determined. In the vanadium(III)-picolinic acid-cysteine system the model obtained was: [V(Pic)(H2Cys)]2+, [V(Pic)(HCys)]+, V(Pic)(Cys) and [V2O(Pic)(Cys)]+. The vanadium(III)-picolinic acid-histidine system contained the following complexes: [V(Pic)(HHis)]2+, [V(Pic)(His)]+, V(Pic)(His)(OH) and [V(Pic)2(HHis)]+. In the vanadium(III)-picolinic acid-aspartic acid system the model obtained was: V(Pic)(Asp), [V(Pic)(Asp)(OH)] and [V2O(Pic)(Asp)]+ and finally, in the vanadium(III)-picolinic acid-glutamic acid system the complexes: V2O(Pic)2(HGlu)2, V(Pic)(HGlu)2 and V(Pic)2(HGlu) were observed.  相似文献   

10.
This work reports a novel chlorooxime mediated modification of native peptides and proteins under physiologic conditions. This method features fast reaction kinetics (apparent k2=306±4 M−1s−1 for GSH) and exquisite selectivity for cysteine residues. This cysteine conjugation reaction can be carried out with just single-digit micromolar concentrations of the labeling reagent. The conjugates show high stability towards acid, base, and external thiol nucleophiles. A nitrile oxide species generated in situ is likely involved as the key intermediate. Furthermore, a bis-chlorooxime reagent is synthesized to enable facile Cys-Cys stapling in native peptides and proteins. This highly efficient cysteine conjugation and stapling was further implemented on bacteriophage to construct chemically modified phage libraries.  相似文献   

11.
Low yields, poor folding efficiencies and improper disulfide bridge formation limit large-scale production of cysteine-rich proteins in Escherichia coli. Human renal dipeptidase (MDP), the only human β-lactamase known to date, is a homodimeric enzyme, which contains six cysteine residues per monomer. It hydrolyses penem and carbapenem β-lactam antibiotics and can cleave dipeptides containing amino acids in both d- and l-configurations. In this study, MDP accumulated in inactive form in high molecular weight, disulfide-linked aggregates when produced in the E. coli periplasm. Mutagenesis of Cys361 that mediates dimer formation and Cys93 that is unpaired in the native MDP led to production of soluble recombinant enzyme, with no change in activity compared with the wild-type enzyme. The removal of unpaired or structurally inessential cysteine residues in this manner may allow functional production of many multiply disulfide-linked recombinant proteins in E. coli.  相似文献   

12.
We studied the effect of cysteine modification on creatine kinase (CK) aggregation as well as the kinetics of the process. We found that CK aggregation was modulated by different pH conditions in the presence of Zn2+, which is a CK aggregation trigger. The CK aggregation followed first-order kinetics, and this was effectively suppressed in acidic conditions. Even under the acidic condition, cysteine modification at the active site with using 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) induced conspicuous aggregation in a dose-dependent manner. This aggregation process is directly related with decreasing the change of transition free-energy (ΔΔG AG ). When dithiothreitol (DTT) was applied to the reaction system, the aggregates were significantly reduced: DTT treatment can fully reactivate (higher than 80%) the inactive CK that was separated from CK aggregates, whereas CK was completely inactivated by Zn2+ and DTNB. Some added osmolytes such as glycine and proline were able to successfully block CK aggregation by increasing the ΔΔG AG as well as by suppressing the hydrophobic CK surface. Our study suggests the effect of cysteine modification on the unfavorable aggregation of CK and on the aggregation process that followed first-order kinetics with the accompanying changes of transitional free energy and disruptions of the hydrophobic surface. We also demonstrate the successful protocol to block the aggregation.  相似文献   

13.
Hemoglobin (Hb) (α2β2) is a tetrameric protein–protein complex. Collision cross sections, hydrogen exchange levels, and tandem mass spectrometry have been used to investigate the properties of gas-phase monomer, dimer, and tetramer ions of adult human hemoglobin (Hb A, α2β2), and two variant hemoglobins: fetal hemoglobin (Hb F, α2γ2) and sickle hemoglobin (Hb S, α2β2, E6V[β]). All three proteins give similar mass spectra. Monomers of Hb S and Hb F have similar cross sections, ca. 10% greater than those of Hb A. Cross sections of dimer ions of Hb S are 11% greater than those of Hb A and 6% greater than those of Hb F. Tetramers of Hb S are 13% larger than tetramers of Hb A or Hb F. Monomers and dimers of all three Hb have similar hydrogen-deuterium exchange (HDX) levels. Tetramers of Hb S exchange 16% more hydrogens than Hb A and Hb F. In tandem mass spectrometry, monomers of Hb S and Hb F require ca. 10% greater internal energy for heme loss than Hb A. Dimers (+11) of Hb A and Hb S dissociate to monomers with asymmetrical charge division; dimers of Hb F (+11) dissociate with nearly equal charge division. Tetramer ions dissociate to monomers and trimers, unlike solution Hb, which dissociates to dimers. The most stable dimers are from Hb S; the most stable tetramers from Hb F. The results with Hb S show that a single mutation in the β chain can change the physical properties of this gas-phase protein–protein complex.  相似文献   

14.
15.
Hemoglobin (Hb) is a tetrameric noncovalent complex consisting of two α- and two β-globin chains each associated with a heme group. Its exact assembly pathway is a matter of debate. Disorders of hemoglobin are the most common inherited disorders and subsequently the molecule has been extensively studied. This work attempts to further elucidate the structural properties of the hemoglobin tetramer and its components. Gas-phase conformations of hemoglobin tetramers and their constituents were investigated by means of traveling-wave ion mobility mass spectrometry. Sickle (HbS) and normal (HbA) hemoglobin molecules were analyzed to determine whether conformational differences in their quaternary structure could be observed. Rotationally averaged collision cross sections were estimated for tetramer, dimer, apo-, and holo-monomers with reference to a protein standard with known cross sections. Estimates of cross section obtained for the tetramers were compared to values calculated from X-ray crystallographic structures. HbS was consistently estimated to have a larger cross section than that of HbA, comparable with values obtained from X-ray crystallographic structures. Nontetrameric species observed included apo- and holo- forms of α- and β-monomers and heterodimers; α- and β-monomers in both apo- and holo- forms were found to have similar cross sections, suggesting they maintain a similar fold in the gas phase in both the presence and the absence of heme. Heme-deficient dimer, observed in the spectrum when analyzing commercially prepared Hb, was not observed when analyzing fresh blood. This implies that holo-α-apo-β is not an essential intermediate within the Hb assembly pathway, as previously proposed.  相似文献   

16.
An analytical method based on microchip electrophoresis (MCE) and chemiluminescence detection (CL) was developed for the determination of intracellular sulphydryl compounds. Cell injection/loading, cytolysis, electrophoretic separation, and CL detection were integrated onto a simple cross-microfluidic chip. Selective CL detection of sulphydryl compounds was achieved by deploying the luminol–Na2S2O8 reaction. Under the CL conditions selected, many endogenous compounds in biological systems such as amino acids, biogenic amines, peptides and proteins did not produce any CL signal, which further ensured a high selectivity of the proposed MCE–CL assays. Sulphydryl compounds including cysteine (Cys), glutathione (GSH), and hemoglobin (Hb) were selected as the test compounds. The MCE separation was completed within 120 s. The detection limits were estimated to be 7 amol for Cys, 32 amol for GSH and 69 amol for Hb, respectively. The present method was applied to analyze individual red blood cells collected from both healthy subjects and cancer patients. It was found that the average intracellular contents of Cys, GSH and Hb were in the ranges of 26–43 amol/cell, 128–323 amol/cell and 522–667 amol/cell, respectively for cancer patients, compared to 579–609 amol Hb/cell and not detectable Cys and GSH for healthy subjects.  相似文献   

17.
The partial and integral enthalpies of mixing of liquid Bi–Sn–Zn alloys were determined at 500°C by a drop calorimetric technique using a Calvet-type microcalorimeter. The ternary interaction parameters in the Bi–Sn–Zn system were fitted using the Redlich-Kister-Muggianu model for substitutional solutions, and isoenthalpy curves of the integral molar enthalpy of mixing at 500°C were constructed. Furthermore, a DSC technique was used to determine the liquidus temperatures in three sections (3, 5, and 7 at.% Zn) as well as the invariant reaction temperature of the ternary eutectic L ⇄ (Bi) + (Sn) + (Zn). The ternary eutectic reaction was found at 135°C.  相似文献   

18.
Abstract

Reduction of sulfimides and sulfoximides with p-toluenesulfonyl nitrite, a new nitrosating agent, gave nearly quantitatively the corresponding deimination products, sulfides and sulfoxides, respectively. In the reaction of dialkyl and aryl alkyl sulfoximides with t-butyl thionitrate, N-t-butylthiosulfoximides were obtained besides the usual deimination products, although diaryl sulfoximides were readily deiminated to the corresponding sulfoxides in good yields in the same treatment. t-Butyl thionitrate was also found to deiminate diphenyl sulfimide to give diphenyl sulfide in good yield. Sulfoximides reacted sluggishly with t-butyl thionitrite, however, eventually affording a small amount of sulfoxides.  相似文献   

19.
The hydrogen bonding interactions between cysteine (Cys) and formaldehyde (FA) were studied with density functional theory regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules and natural bond orbital analyses were employed to elucidate the interaction characteristics in the Cys‐FA complexes. The intramolecular hydrogen bonds (H‐bonds) formed between the hydroxyl and the N atom of cysteine moiety in some Cys‐FA complexes were strengthened because of the cooperativity. Most of intermolecular H‐bonds involve the O atom of cysteine/FA moiety as proton acceptors, while the strongest H‐bond involves the O atom of FA moiety as proton acceptor, which indicates that FA would rather accept proton than providing one. The H‐bonds formed between the CH group of FA and the S atom of cysteine in some complexes are so weak that no hydrogen bonding interactions exist among them. In most of complexes, the orbital interaction of H‐bond is predominant during the formation of complex. The electron density (ρb) and its Laplace (?2ρb) at the bond critical point significantly correlate with the H‐bond parameter δR, while a linearly relationship between the second‐perturbation energy E(2) and ρb has been found as well. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
The present work discusses the complexation behavior of bioligand cysteine with cobalt and the immobilization of this complex (Co–Cys) onto a biocompatible ligand and common drug base, polyvinylpyrrolidone (PVP). The complexation behavior has been studied by radiometric method and UV–Vis spectrophotometry. The radiometric method involves dialysis of 60Co–Cys–PVP complex against triple distilled water which subsequently gives the dynamic dissociation constant (k d) of the complex. The half life of 60Co–Cys–PVP complex calculated from k d value is 22.6 h against triple distilled water at pH 8.5. The UV–Vis spectra analysis confirms the complexation of Co with cysteine at this pH and also indicates that the cysteine ligated Co(II) centers easily get oxidised to Co(III) centers (low spin, d6) in the presence of air at alkaline pH showing no d–d transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号