首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient chiral N-heterocyclic carbene ligand for the Ir-catalyzed asymmetric hydrogenation of largely unfunctionalized tri-substituted olefins has been developed. The Ir-NHC-thiazole catalyst is able to reduce a large variety of substrates with excellent conversions and good enantioselectivities with ee’s ranging from 34% to 90%, depending on the geometry around the double bond of the substrates.  相似文献   

2.
(S)-QUINAP reacted with [Ir(cod)Cl]2 to form a new chelating iridium complex in 77.4% yield. The iridium complex was proved to be a highly efficient catalyst for the enantioselective hydrogenation of olefins. 33.4-95.1% ee were obtained for the hydrogenation of unfunctionalized olefins and 90.8-96.1% ee were obtained for functionalized olefins.  相似文献   

3.
Wang X  Guram A  Caille S  Hu J  Preston JP  Ronk M  Walker S 《Organic letters》2011,13(7):1881-1883
A new synthetic strategy that turns styrene-type olefins into excellent substrates for Rh-catalyzed asymmetric hydrogenation by installing a 2'-hydroxyl substituent is described. This methodology accommodates trisubstituted olefinic substrates in various E/Z mixtures, leading to valuable benzylic chiral compounds including (R)-tolterodine. It is also demonstrated that the 2'-hydroxyl groups could be readily removed in high yield without loss of ee from the products. Thus, this technology represents an attractive alternative to the Ir(P-N) catalyst system for the asymmetric hydrogenation of unfunctionalized olefins.  相似文献   

4.
Despite the generally accepted belief that carbene-metal bonds are strong and do not dissociate, the reaction of Rh-N-heterocyclic carbene complexes with triphenylphosphine in dichloroethane was determined to take place via cleavage of the Rh-carbene bond. The products of this reaction are Wilkinson’s catalyst and a bisimidazolium salt derived from reaction between dichloroethane and two equivalents of the carbene. The implications of this reaction for catalysis are significant since the carbene complex shows lower activity than Wilkinson’s catalyst in hydrogenation reactions. In non-halogenated solvents, the catalyst shows higher stability, such that the rate of exchange with free phosphine could be measured, and was determined to be ca. 10 times slower than in Wilkinson’s catalyst.  相似文献   

5.
制备了聚N-乙烯基吡咯烷酮分散钯催化剂,考察了它对不同底物的加氢活性和在不同介质中对丙烯酸甲酯的加氢活性。结果表明,不同底物的加氢活性和反应级数都有很大的差别,且反应介质对丙烯酸甲酯的加氢速率也有很大影响。还得到了丙烯酸甲酯加氢反应的速率方程。  相似文献   

6.
The isomerization of primary allylic alcohols into the corresponding aldehydes has been accomplished using an analogue of Crabtree’s iridium hydrogenation catalyst and by adequately tuning the experimental conditions. A wide range of substrates is converted quantitatively into the desired aldehyde at room temperature in expedient reaction times by using catalyst loading as low as 0.25 mol %.  相似文献   

7.
Here, we report a highly effective and chemoselective method of preparing substituted indoles from (E)-2-nitropyrrolidinostyrenes via hydrogenation in the presence of a rhodium catalyst doped by additives such as Ni(NO3)2·6H2O, Fe(OAc)2 or Co(acac)3. These hydrogenation conditions may also be applied to other substrates. Aromatic nitro compounds and olefins can be selectively reduced in the presence of aromatic benzyl ethers, aromatic halides and aromatic aldehydes.  相似文献   

8.
One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA‐[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site‐directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA‐[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis‐ over trans‐stilbene by about 20:1. This enzyme is the first cofactor‐independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme‐catalyzed reactions.  相似文献   

9.
Boehmite-supported Pd nanoparticles (Pd–TA–boehmite) were successfully synthesized by a hydrothermal method using tannic acid as the structure-directing agent as well as stabilizer. The physicochemical properties of the Pd–TA–boehmite catalyst were well characterized by XPS, XRD, N2 adsorption/desorption, and TEM analyses. Catalytic hydrogenation of olefins was used as the probe reaction to evaluate the activity of the Pd–TA–boehmite catalyst. For comparison, the Pd–boehmite catalyst prepared without tannic acid was also employed for olefin hydrogenation. For all the investigated substrates, the Pd–TA–boehmite catalyst exhibited superior catalytic performance than the Pd–boehmite catalyst. For the example of hydrogenation of allyl alcohol, the initial hydrogenation rate and selectivity of the Pd–TA–boehmite catalyst were 23,520 mol/mol h and 99 %, respectively, while those of the Pd–boehmite catalyst were only 14,186 mol/mol h and 93 %, respectively. Additionally, the hydrogenation rate of the Pd–TA–boehmite catalyst could still reach 20,791 mol/mol h at the 7th cycle, which was much higher than that of the Pd–boehmite catalyst (5,250 mol/mol h) at the 4th cycle, thus showing an improved reusability.  相似文献   

10.
Akinori Mori 《Tetrahedron》2006,62(51):11925-11932
While Pd/C is one of the most useful catalysts for hydrogenation, the high catalyst activity of Pd/C causes difficulty in its application to chemoselective hydrogenation between different types of reducible functionalities. In order to achieve chemoselective hydrogenation using Pd/C, we investigated catalyst poison as a controller of the catalyst activity. We found that the addition of Ph2S (diphenylsulfide) to the Pd/C-catalyzed hydrogenation reaction mixture led to reasonable deactivation of Pd/C. By the use of the Pd/C-Ph2S catalytic system, olefins, acetylenes, and azides can be selectively reduced in the coexistence of aromatic carbonyls, aromatic halides, cyano groups, benzyl esters, and N-Cbz (benzyloxycarbonyl) protecting groups. The present method is promising as a general and practical chemoselective hydrogenation process in synthetic organic chemistry.  相似文献   

11.
以二烷基二硫代氨基甲酸钼(Mo-DTC)和六羰基钼(Mo(CO)6)为前驱体、水热法合成了分散型纳米MoS2,采用X-ray射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱分析(XPS)和程序升温脱附法(NH3-TPD)等方法对其进行了表征。利用三种烯烃(辛烯、苯乙烯、反式二苯乙烯)、苯并噻吩和蒽等构建模拟油浆体系,结合气相色谱-质谱(GC-MS)分析,对分散型纳米MoS2的模拟油浆加氢处理催化性能进行了研究。结果表明,不同预处理条件下制备出的催化活性样品均为2H-MoS2,但各样品的结晶度、颗粒尺寸、硫化程度及其酸性质等均有所不同,其中,总酸量差别较小;以Mo-DTC和Mo(CO)6为前驱体的优选硫化条件分别为380℃/30 min 和370℃/30 min,所得到的催化剂对烯烃和噻吩的加氢活性较高。其中,Mo-DTC基纳米MoS2催化剂的烯烃加氢饱和转化率高达98.10%,加氢脱硫率为94.51%,而蒽的部分加氢饱和转化率则较低,为29.47%,且无八氢蒽(8HN)或全氢蒽的生成。Mo(CO)6基纳米MoS2催化剂的加氢效果则略差,烯烃加氢饱和转化率为94.01%,加氢脱硫率为89.01%,对蒽的加氢饱和转化率为24.20%,无8HN或全氢蒽的生成。总体而言,由Mo-DTC所制备的MoS2催化剂具有烯烃高效饱和、含硫化合物高效脱硫、芳烃浅度加氢饱和的效果,且油浆加氢处理反应的选择性及催化稳定性均更高。  相似文献   

12.
The present work is to the syntheses and characterization of random, low vinyl copolymers containing styrene and isoprene (SIR’s). The content of these SIR’s ranged from 10% styrene/90% isoprene to 60% styrene/40% isoprene, and all were soluble in hexane solvent. The anionic polymerization of these SIR’s was initiated by a catalyst system of various sodium dodecylbenzene sulfonate (SDBS) to n-butyllithium (n-BuLi) ratios. The SDBS allowed for styrene to become randomly incorporated onto the polyisoprene chain without any increase in the 3,4-unit of the isoprene. The glass transition temperature of the resulting polymers could be controlled by the styrene content and microstructure (blocky versus random) in the polymer chain. Kinetic data confirmed that styrene and isoprene have similar reaction kinetics. NMR and ozonolysis confirmed that random, low vinyl SIR’s were indeed being synthesized. The unique features of this system are that it does not metallate the polymers as was seen in the previous publication using the sodium and potassium alkoxides. Molecular weight differences due to SDBS are discussed. Finally, rubber process analyzer (RPA) results were presented for various styrenes content SIR’s.  相似文献   

13.
A polymer-supported palladium-imidazole catalyst was used to catalyze the hydrogenation of various olefins under mild conditions. The rate of hydrogenation was studied. The effects of factors such as substrate concentration,catalyst concentration,partial pressure of hydrogen and temperature on initial rate of reaction of selected olefins were investigated. A mechanism for the reaction was proposed from the rate equation. The effects of the solvent and structure of the olefin on the rate of hydrogenation were investigated. The catalyst showed good reusability without any leaching of metal from the support. The homologous analog of the polymer-supported catalyst could not be used as catalyst for the hydrogenation of olefins in methanol because there was precipitation of the metal during reaction.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(15):2525-2530
Tunable dendritic N-mono-sulfonyl ligands have been designed and synthesized via direct N-mono-sulfonylization of the chiral dendritic vicinal diamines and their ruthenium complexes demonstrated high catalytic and recyclable activities with comparable enantioselectivities to Noyori–Ikariya’s TsDPEN-Ru in the asymmetric transfer hydrogenation of an extended range of substrates, such as ketones, keto esters, and olefins.  相似文献   

15.
The complex [Ir(σ-carb)(CO)(PhCN)(PPh3)], where carb = -7-C6H5-1,2C2B10H10, was found to be an effective catalyst for homogeneous hydrogenation of terminal olefins and acetylenes at room temperature and atmospheric or subatmospheric hydrogen pressure. Internal olefins are not hydrogenated, but simple alk-1-enes are readily converted into the corresponding alkanes. Isomerization of the double bond catalyzed by the metal complex occurs at very small extent. Catalytic hydrogenation of olefins having carboxylate substituents on the unsaturated carbon atoms is prevented by the formation of thermally stable chelate hydridoalkyl complexes of the type I(H)(σ-CHRCHR′C(O)OR″) (σ-carb)(CO)(PPh3)]. Acetylenes are hydrogenated to alkenes. The alk-1-enes formed in the hydrogenation of the alkynes HCCR in turn undergo the more slow reactions either of hydrogenation to alkanes or isomerization to internal olefins which cannot be further hydrogenated. Hydrogenation of alkynes of the type RCCR′ is stereospecifically cis, yielding cis- olefins. Catalyzed cistrans isomerization reaction of these internal olefins occurs only to a negligeable extent.  相似文献   

16.
A new type of supramolecular chiral phosphorus-based ligands was prepared from easily available monodentate ligands through complexation between dibenzylammonium salt and dibenzo[24]crown-8 macrocycle. Rhodium complexes with these supramolecular ligands were prepared, and the supramolecular bidentate ligand-containing catalyst has demonstrated better catalytic activity for all substrates, and higher enantioselectivity except for the ortho-substituted substrates than those obtained from the parent monodentate ligand in the asymmetric hydrogenation of α-dehydroamino acid esters.  相似文献   

17.
The performance of the K-Fe-MnO/Si-2 catalyst for the production of light olefins via Co hydrogenation changes obviously with the addition of binders. The results of CO hydrogenation. TPR, Mossbauer spectra CI0TPF, CO/H2-TPSR and C2H4/H2-TPSR are employed to investigate the effects of various binders on the physical-chemical states and catalytic behaviors of K-Fe-MnO/Si-2 catalyst to produce light olefins via syngas, TiO2 can promote the reduction of Fe and strengthen the adsorption of CO resulting in raising olefin selectivity. Other binders such as Al2O3, SiO2, MgO, once added into the catalyst, may cause formation of inorganic salts between FeO and Binders leading to a decrease of Fe reduction and a loss of olefin selectivity for CO hydrogenation. Especially, For K-Fe-MnO/Si-2 catalyst with Al2O3 binder directly, the strong secondary reactions of ethylene during CO hydrogenation cause a very poor light olefin selectivity, which will be improved greatly by modifying Al2O3.  相似文献   

18.
The field of asymmetric (transfer) hydrogenation of prochiral olefins has been dominated by noble metal catalysts based on rhodium, ruthenium, and iridium. Herein we report that a simple nickel catalyst is highly active in the transfer hydrogenation using formic acid. Chiral α‐ and β‐amino acid derivatives were obtained in good to excellent enantioselectivity. The key toward success was the use of the strongly donating and sterically demanding bisphosphine Binapine.  相似文献   

19.
《Tetrahedron: Asymmetry》1998,9(23):4183-4192
The chiral ligand (−)-(4R,5R)-4,5-bis[di-3′-(2′,6′-dimethoxypyridyl)phosphinomethyl]-2,2-dimethyl-1,3-dioxolane 3 [(R,R)-Py*-DIOP] was synthesized via a key intermediate bis[3-(2,6-dimethoxypyridyl)]phosphine-borane 9. The asymmetric hydrogenation of prochiral olefins was investigated using a rhodium catalyst containing 3. For the hydrogenation of amidoacrylic acids, enols and itaconic acid, while the enantioselectivity of [Rh-(R,R)-Py*-DIOP] was similar to that of [Rh-(R,R)-DIOP] the absolute configurations of the products from the two catalyst systems were found to be opposite.  相似文献   

20.
Intr0ductionRcccntl}.n1uchprogrcsshasbcc11n1adcinthcscIcctivcCOh\'drogcnationproducingliglltolcfinsvIas}'ngasb}'dct'clopingasilicalitc-2zcolitcsupp0rtcdFccatal\'st.Ithasbccllshox\llthatasilicaIitc-2zcoIitcsupportcdFccatal\'stpromotcdb}'aIkalin1ctalandMnOdispla}sadcsirabIcolcfil1sclccti\'it}(asl1ighas7()%)andadcsirablcCOcont'crsion(muchhighcrthan7O%)\\ithabett.,rcactionlifconst,ca.I1~31.Ho\\cvcr-thcundcsirablcstrcl1gthofSi-2zcolitcisunsuitabIcforitsapplicatiOninindustry-\\hichsIlouldbci…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号