首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

2.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

3.
ABSTRACT

In this work, a new turn-on fluorescent probe 1 for Hg2+ ions detection based on rhodamine B spirolactam was reported. Among tested metal ions, probe 1 shows high selectivity towards Hg2+ in the the mixture solution of methanol and 0.02 M HEPES buffer (V/V = 9:1, pH = 7.2). No absorption and emission band of probe 1 was observed in the range from 450 to 700 nm. While only addition of Hg2+ to probe 1 could lead to appearance of a new absorption band centered at 553 nm and a fluorescence emission band around 577 nm upon excitation at 520 nm. Moreover, it exhibits excellent linear relationship (R2 = 0.9993) between fluorescence intensity at 577 nm and the concentration of Hg2+ from 1.6 to 32 μM. The sensing mechanism was proven to be spirolactam ring open induced by Hg2+ through 1H NMR, MS, absorption and fluorescence spectra. In addition, probe 1 could detect Hg2+ in real water samples and on filter paper, which demonstrates its application in environment science.  相似文献   

4.
Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg2+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb3+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg2+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg2+. As a kind of Hg2+ nanosensor, the probe exhibited excellent selectivity for Hg2+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg2+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging.  相似文献   

5.
Using the Hg2+-induced desulfurization reaction of thiosemicarbazide derivative, we designed and synthesized a novel “turn on” coumarin-based fluorescent probe L with a simple structure for detecting mercury ion (II). Spectroscopy revealed that the probe responds selectively to mercury ions over other metal ions with marked fluorescence enhancement. Detection of Hg2+ was effective at pH 7.0–9.5, with high selectivity and significant effect in HeLa cells, human umbilical vein endothelial cells and Escherichia coli, but no cytotoxicity. This probe could be an ideal and practical Hg2+ probe with important biological significance.  相似文献   

6.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

7.
The heavy metal mercury (Hg) is a threat to the health of people and wildlife in many environments. Among various chemical forms, Hg2+ salts are usually more toxic than their counterparts because of their greater solubility in water; thus, they are more readily absorbed from the gastrointestinal tract into circulation. Therefore, new chemical receptors for detecting Hg2+ ions in circulation are needed. In this study, we developed a rhodamine-based turn-on fluorescence probe to monitor Hg2+ in aqueous solution and in blood of mice with toxicosis. The chemodosimeter responds to Hg2+ ions stoichiometrically, rapidly, and irreversibly at room temperature as a result of a chemical reaction that produces strongly fluorescent oxadiazole. The new fluorescent probe shows good fluorescence response, with high sensitivity and selectivity, toward Hg2+ ions in aqueous solution and in blood from mice with toxicosis and facilitates the naked-eye detection of Hg2+ ions.  相似文献   

8.
2-(2′,5′-Dihydroxy-phenyl)-4(3H)-quinazolinone (DHPQ), a new fluorescent dye that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesised and used as fluorescent probe for detection of Hg2+. Mercuric ions can be detected and quantitated by measuring the fluorescent intensity decrease of the probe. The decrease of fluorescence intensity of DHPQ upon the addition of Hg2+ was attributed to the blocking of ESIPT reactions of DHPQ and quenching its fluorescence. The analytical performance characteristics of the proposed Hg2+ probe were investigated. The probe can be applied to the quantification of Hg2+ with a concentration range covering from 8.0?×?10?7 to 2.0?×?10?4?mol?L?1, with a working pH range of 5.5–6.5. It shows excellent selectivity for Hg2+ over other transition metal cations. The proposed method was testified for the Hg2+ assay in river water samples with satisfying recoveries.  相似文献   

9.
A new type of fluorescent probe capable of detecting Ag+ and Hg2+ in two independent channels was developed in the present work. Specifically, in CH3CN–MOPS mixed solvents with CH3CN/MOPS ratio (v/v) of 15/85, this type of probe fluoresced weakly, and the addition of Ag+ remarkably induced fluorescence enhancement of the probe. In CH3CN–MOPS mixed solvents with the percentage of CH3CN increased up to 65%, the probe was highly fluorescent and addition of Hg2+ dramatically induced the fluorescence quenching. Thus, using such single-fluorophore-based probe and tuning the polarity of the mixed solvent, Ag+, and Hg2+ can be detected in independent channels with high selectivity and sensitivity. As a result, the mutual interference usually encountered in most cases of Ag+ and Hg2+ sensing owing to the similar fluorescence response that these two ions induced, can be effectively circumvented by using the probes developed herein.  相似文献   

10.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

11.
The selective and efficient monitoring of mercury (Hg2+) contamination found in the environment and ecosystem has been carried out. Thus, a new 1,8-naphthalimide-based fluorescent probe NADP for the detection of Hg2+ based on a fluorescence enhancement strategy has been designed and synthesized. The NADP probe can detect Hg2+ with high selectivity and sensitivity and a low detection limit of 13 nm . The detection mechanism was based on a Hg2+-triggered deprotection reaction, resulting in a dramatic change in fluorescence from colorless to green at physiological pH. Most importantly, biological investigation has shown that the NADP probe can be successfully applied to the monitoring of Hg2+ in living cells and zebrafish with low cytotoxicity.  相似文献   

12.
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg2+, Pb2+, light metal Al3+ ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb2+/Al3+ metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb2+ and Al3+ ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb2+ and Al3+ ions.  相似文献   

13.
A novel organic–inorganic silica‐based fluorescent probe was designed, synthesized and characterized by different techniques such as XRD, BET, TGA, and FT‐IR. The fluorescence properties of the probe were studied in the presence of a variety of metal‐ions in water. The results revealed that various metal‐ions negligibly vary the emission intensity of the probe except for Hg2+, which quenched the intensity dramatically. The selectivity of the probe toward Hg2+ ion was further investigated in the presence of common competing metal‐ions and the results demonstrated the high selectivity of the probe toward Hg2+ ion. The fluorescence emission of the probe was also studied as a function of the concentration of Hg2+ ion. A nanomolar limit of detection was estimated for Hg2+, indicating a high sensitivity. Furthermore, the probe showed INHIBIT‐type logic behavior with Hg2+ and H+ as inputs. Also, the optimum pH range was studied in addition to reversibility and real world applicability of the probe.  相似文献   

14.
A new, highly sensitive probe L2 for the selective detection of Hg2+ in organo-aqueous (H2O:CH3CN, 1:1, v/v, HEPES buffer, pH 7.2) medium has been synthesized from rhodamine 6G-hydrazide and 4-nitroindole-3-carboxaldehyde. It was thoroughly characterized by physicochemical techniques including single crystal X-ray diffraction studies. The reaction of L2 with Hg2+ gives a 1:1 stoichiometry resulting in a 146 fold fluorescence enhancement and a binding constant (Kf) of 3?×?104 M?1. The spirolactam form of the probe is non-fluorescent; however, it shows dual channel (absorbance and fluorescence) recognition of Hg2+ via CHEF effect through the opening of the spirolactam ring. The quantum yields of L2 (0.00045) and L2-Hg2+ (0.29) show the higher stability of complex in the excited state over the free ligand. The 44.5?nM LOD value demonstrates the detection of Hg2+ at a very low concentration range. Cell imaging studies show the cytoplasmic recognition of Hg2+ by L2. Experimental results are comparable with theoretical values obtained by DFT studies. The fluorescence emission of the complex was completely quenched by I- and from the reversibility studies an advance level INHIBIT logic gate and memory device can be framed.  相似文献   

15.
We have developed a FRET-based ratiometric fluorescent probe for the detection of CN using a fluorescein–Zn–naphthalene ensemble (NFH·Zn2+). The sensing mechanism was ascribed by displacement approach. The chemosensor exhibits high selectivity and sensibility for CN. The speculation was supported by fluorescence emission spectra, UV–vis spectrum, 1H NMR titration experiments, and mass spectra. The interconversion of probe NFH and NFH·Zn2+ via the complexation/decomplexation by the modulation of Zn2+/CN mimics INHIBIT gate. In addition, it also shows an excellent performance in ‘dip stick’ method.  相似文献   

16.
A small organic molecule P was synthesized and characterized as a fluorometric and colorimetric dual-modal probe for Hg2+. The sensing characteristics of the proposed probe for Hg2+ were studied in detail. A fluorescent enhancing property at 583 nm (>30 fold) accompanied with a visible colorimetric change, from colorless to pink, was observed with the addition of Hg2+ to P in an ethanol-water solution (8:2, v/v, 20 mM HEPES, pH 7.0), which would be helpful to fabricate Hg2+-selective probes with “naked-eye” and fluorescent detection. Meanwhile, cellular experimental results demonstrated its low cytotoxicity and good biocompatibility, and the application of P for imaging of Hg2+ in living cells was satisfactory.  相似文献   

17.
汞离子(Hg~(2+))由于高毒性以及容易对环境和人体造成损害,其检测越来越受到人们的重视。本文基于4-(二乙氨基)水杨醛设计合成了一种近红外发射荧光探针L,该探针可在MeCN/HEPES(体积比2/8,pH=7.4)缓冲溶液中高选择性地荧光增强识别Hg~(2+),其具有合成简便、抗干扰能力强、适用pH范围宽等特点。进一步研究表明,探针L可用于真实水样中Hg~(2+)的检测。  相似文献   

18.
Xiaoxia Fan 《Analytical letters》2019,52(13):2028-2040
A thiourea-detecting fluorescence sensor with Hg2+ as a switch was developed using nitrogen-doped graphene quantum dots (N-GQDs). The surface of N-GQDs had many organic functional groups on which Hg2+ was effectively bound and turned off the fluorescence of the N-GQDs. The fluorescence of N-GQDs was turned on by the thiol functional group of thiourea that bound strongly with Hg2+ and formed Hg2+/thiourea complexes. After constructing the sensor, the experimental conditions and parameters, such as the pH and Hg2+ concentration, were investigated and optimized. Under the optimum conditions, the constructed fluorescence sensor showed high sensitivity to thiourea at concentrations from 0.5 to 14?µM with a low detection limit of 41.7?nM. The sensor also exhibited high specificity, excellent stability, and good reproducibility so that the determination of thiourea in various samples had acceptable values with good recoveries from 99% to 106%. The relative standard deviation was less than 4.1% (n?=?3).  相似文献   

19.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

20.
A novel rhodamine-based chemosensor (R) was designed and synthesised for selective recognition of Hg2+ ion in real water samples collected from different places. The chemosensor was prepared in green condition with high yield. The selectivity of R was examined with various metal ions, among which only Hg2+ was identified selectively with offon mechanism along with enhancement of fluorescence. Metal ions recognition has been carried out using UV–vis and fluorescence studies taking µM concentration of chemosensor R in HEPES buffer. The detection limit of R was calculated and found to be 4.4 × 10–9 M. Quantum chemical (DFT) calculation was carried out in order to acquire knowledge about the stability of R in presence of Hg2+ ions. Cell viability and fluorescence microscopic experiments showed R as cytocompatible and can be used as a fluorescent probe for detecting Hg2+ in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号