首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Achiral 1-benzoyl-3-methylperhydropyrimidin-4-one (1) was deemed a useful, potential precursor for the enantioselective synthesis of α-substituted β-amino acids. Pyrimidinone 1 was prepared from inexpensive β-aminopropanoic acid in 62% overall yield. Prochiral enolate derivative 1 -Li was alkylated in good yield and moderate enantioselectivity in the presence of chiral amines (S)-8, (S,S)-9, (S,S)-10, or (−)-sparteine. The enantioselectivity of the alkylation process is highest in toluene as the solvent and in the presence of lithium bromide as additive. The racemic alkylated derivatives 2 and 3 were readily metallated with LDA to give prochiral enolates 2-Li and 3-Li, that were reprotonated with novel chiral phenolic acids (S)-11, (S,S)-12, (S)-13, and (S,S)-14 in moderate enantioselectivity in the case of 2-Li and good enantioselectivity in the case of 3-Li. The acid (6N HCl) hydrolysis of enantioenriched 2 and 3 proceeded in good yield and without racemization to afford α-alkyl-β-amino acids 4 and 5, respectively.  相似文献   

2.
The coupling reaction of 1-tributylstannylthianthrene (5) and 2-tributylstannylthianthrene (7) in the presence of copper catalysts at rt afforded the thianthrene dimer 1,1′-bithianthrene (3), 2,2′-bithianthrene (8), and 1,2′-dithianthrene (9) in high yields. Also we obtained thianthrene oxide dimer (R,R) (S,S)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (12) and (R,S) (S,R)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (13) from 1-tributylstannyl-10-S-monoxythianthrene (10) under the same reaction condition. The final structural conformation of 3, 8, 9, and 12 was performed by X-ray crystallographic analysis. Further, the solvent effects in the coupling reactions were also examined.  相似文献   

3.
This paper describes work that corrects the synthetic procedures reported in the title paper for the preparation of novel chiral phenolic acids (S)-11, (S)-13, (S,S)-12 and (S,S)-14. Unlike the results provided in the article being reexamined, protonation of prochiral enolates 2-Li and 3-Li with chiral Brønsted acids 11-14 proceeded with negligible enantioselectivity.  相似文献   

4.
Selectivity of the reported dimethyl-substituted (R,R)-1, the diisobutyl-substituted (R,R)-2 acridino-18-crown-6 ethers and the newly synthesized acridino-crown ether (S,S)-3 containing the methyl groups one carbon-carbon bond further away from the acridine unit was studied towards the enantiomers of the hydrogen perchlorate salts of α-phenylethylamine, α-(1-naphthyl)ethylamine, phenylglycine methyl ester and phenylalanine methyl ester using fluorescence.  相似文献   

5.
A novel and simple process for the preparation of enantiomerically pure (SS)-benzenesulfinamide (SS)-3a, (SS)-p-toluenesulfinamide (SS)-3b, (SS)-p-chloro-benzenesulfinamide (SS)-3c and (SS)-p-fluorobenzenesulfinamide (SS)-3d has been developed. The treatment of arylsulfinyl chlorides with (R)-N-benzyl-1-phenylethanamine in the presence of excess triethylamine gave diastereomeric mixtures of N-benzyl-N-(1-phenylethyl)-arylsulfinamides 1, which underwent spontaneous crystallization to furnish diastereomerically pure (R,SS)-N-benzyl-N-(1-phenylethyl)-arylsulfinamides (R,SS)-1a-1d in 28%, 29%, 27% and 31% yields, respectively. The diastereomerically pure compounds (R,SS)-1 were then converted into four enantiopure (RS)-methyl arylsulfinates (RS)-2, and finally into four enantiopure (SS)-arylsulfinamides (SS)-3 in good yields.  相似文献   

6.
Jing Lin 《Tetrahedron》2004,60(49):11277-11281
Benzylaminomethyl groups are introduced to the 3,3′-positions of BINOL. The resulting compounds can be used to conduct the enantioselective fluorescent recognition of mandelic acid and N-benzyloxycarbonylphenylglycine. In the presence of (S)-mandelic acid, compound (R)-2 showed over 30-fold fluorescence enhancement with the ef [ef=enantiomeric fluorescence difference ratio=(ISI0)/(IRI0)] up to 4.2. In the presence of d-N-benzyloxycarbonylphenylglycine, compound (RR)-4 showed up to 15-fold fluorescence enhancement with the ef up to 5.0. These high fluorescence sensitivity and enantioselectivity make compounds (R)-2 and (RR)-4 practically useful sensors for the recognition of the chiral acids in apolar solvents.  相似文献   

7.
N-Butadienylsuccinimide (1), iso-propyl N-butadienyl-(S)-pyroglutamate (5) and N-butadienyl-(R)-4-phenyloxazolidin-2-one (6) reacted with vinylphosphonates, vicinally-substituted (2) by electronwithdrawing groups (CO2Me, CN, COMe), to furnish [4+2] cycloadducts (3-4,7-10, and 11-14) in moderate to good yields (40-88%). The reactions were highly selective: regioselectivity of 95-100%, endoselectivity of 75-92% and facial selectivity of 80-95%. The major diastereoisomers were fully characterized by 1H and 13C NMR spectroscopy.  相似文献   

8.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

9.
Racemic methyl, iso-propyl, and tert-butyl ester derivatives of naproxen were treated with achiral LDA base to give the corresponding prochiral enolates 2-Li, 3-Li, and 4-Li. Protonation of these enolates with novel chiral proton sources (S)-10 and (S,S)-11, containing the α-phenylethylamino group, proceeded in a highly enantioselective manner. Saponification of enantioenriched ester derivatives 2-4 afforded naproxen, (S)-1, with no loss of enantiopurity.  相似文献   

10.
Yong-Gang Wang 《Tetrahedron》2007,63(26):6042-6050
Chiral phase-transfer catalysts (S)-1a, (S)-1b, and (S)-2 with conformationally fixed biphenyl cores were conveniently prepared from the known, easily available (S)-6,6′-dimethylbiphenyl-2,2′-diol 3 and (S)-4,5,6,4′,5′,6′-hexamethoxybiphenyl-2,2′-dicarboxylic acid 14, respectively, in five steps. The catalysts, (S)-1a and (S)-1b are readily applicable to asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester with excellent enantioselectivity. In particular, catalyst (S)-1b was found to exhibit the unique temperature effect on the enantioselectivity, and asymmetric alkylation of glycine derivatives at room temperature gave higher enantiomeric excess than that at 0 °C. In addition, the catalyst (S)-2 exhibited the high catalytic performance (0.01-1 mol %) in the asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester and N-(p-chlorophenylmethylene)alanine tert-butyl ester compared to the existing chiral phase-transfer catalysts, thereby allowing to realize a general and useful procedure for highly practical enantioselective synthesis of structurally diverse natural and unnatural α-alkyl-α-amino acids as well as α,α-dialkyl-α-amino acids. This approach is successfully applied to the short asymmetric synthesis of cell adhesion BIRT-377.  相似文献   

11.
The enantioselective synthesis of indolizidines (−)-203A, (−)-209B, (−)-231C, (−)-233D, and (−)-235B″ has been achieved and the absolute stereochemistry of both indolizidines 203A and 233D was established as 5S,8R,9S. The relative stereochemistry of natural 231C was established by the present asymmetric synthesis.  相似文献   

12.
Racemic 1-(1′-isoquinolinyl)-2-naphthalenemethanol rac-12 was prepared through a ligand coupling reaction of racemic 1-(tert-butylsulfinyl)isoquinoline rac-7 with the 1-naphthyl Grignard reagent 10. Resolution of rac-12 was achieved through chromatographic separation of the Noe-lactol derivatives 14 and 15, providing (R)-(−)-12 of >99% ee and (S)-(+)-12 of 90% ee. The ligand coupling reaction of optically enriched sulfoxide (S)-(−)-7 (62% ee) with Grignard reagent 10 furnished rac-12, with the absence of stereoinduction resulting from competing rapid racemisation of the sulfoxide 7. Reaction of optically enriched (S)-(−)-7 with 2-methoxy-1-naphthylmagnesium bromide was also accompanied by racemisation of the sulfoxide 7, and furnished optically active (+)-1-(2′-methoxy-1′-naphthyl)isoquinoline (+)-3b in low enantiomeric purity (14% ee). The absolute configuration of (+)-3b was assigned as R using circular dichroism spectroscopy, correcting an earlier assignment based on the Bijvoet method, but in the absence of heavy atoms. Optically active 2-pyridyl sulfoxides were found not to undergo racemisation analogous to the 1-isoquinolinyl sulfoxide 7, with the ligand coupling reactions of (R)-(+)- and (S)-(−)-2-[(4′-methylphenyl)sulfinyl]-3-methylpyridines, (R)-(+)-17 and (S)-(−)-17, with 2-methoxy-1-naphthylmagnesium bromide providing (−)- and (+)-2-(2′-methoxy-1′-naphthyl)-3-methylpyridines, (−)-18 and (+)-18, in 53 and 60% ee, respectively. The free energy barriers to internal rotation in 3b and 18 have been determined, and the isoquinoline (R)-(−)-12 examined as a ligand in the enantioselectively catalysed addition of diethylzinc to benzaldehyde; (R)-(−)-12 was also converted to (R)-(−)-N,N-dimethyl-1-(1′-isoquinolinyl)-2-naphthalenemethanamine (R)-(−)-19, and this examined as a ligand in the enantioselective Pd-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate.  相似文献   

13.
Preparation of N-cinnamoyl- and N-crotonyl-oxazolidin-2-ones 2 and 3 or ent-2 and ent-3 from (4S,5S)- and (4R,5R)-trans-hexahydrobenzoxazolidin-2-ones 1 or ent-1 are reported. Stereoselective copper promoted conjugated additions of Grignard reagents to chiral N-enoyl amides 2 and 3 or ent-2 and ent-3 in the presence of Zn(II) salts afforded the 1,4-addition products 4-11 and the corresponding enantiomers.  相似文献   

14.
An enantioselective synthesis of sterically congested 1,2-di-tert-butyl and 1,2-di-(1-adamantyl)ethylenediamines has been developed. Thus, diastereomerically pure trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 were successfully prepared by optical resolution of (±)-trans-4,5-dimethoxy-2-imidazolidinone using apocamphanecarbonyl chloride (MAC-Cl) followed by stereospecific and stepwise substitution of the dimethoxyl groups using tert-butyl or 1-adamantyl cuprates to provide (4S,5S)-4,5-di-tert-butyl and (4R,5R)-4,5-di-(1-adamantyl)-2-imidazolidinones 12 and 15, respectively. Furthermore, N-acetyl 4,5-di-tert-butyl and 4,5-di-(1-adamantyl)-2-imidazolidinones 16a,b were enantioselectively deacetylated using a catalytic oxazaborolidine system to provide enantiopure 1-p-tolylsulfonyl-4,5-di-tert-butyl-2-imidazolidinones 12 and 19 and 1-p-tolylsulfonyl-4,5-di-(1-adamantyl)-2-imidazolidinones 18 and 20, respectively. Finally, N-p-tolylsulfonyl-2-imidazolidinones 12 and 15 were treated with 30 equiv of Ba(OH)2·8H2O to achieve ring cleavage and to provide (1S,2S)-1,2-di-tert-butylethylenediamine 3 and (1R,2R)-1,2-di-(1-adamantyl)ethylenediamine 4.  相似文献   

15.
We describe an intriguing new example of a parallel kinetic resolution; an asymmetric cyclization-carbonylation of propargyl ketols catalyzed by palladium(II) with chiral bisoxazoline (box) ligands. The 2S,3S enantiomer of (±)-6 was preferentially converted to 13 (45-49% yields, 37-46% ee), and the 2R,3R enantiomer of (±)-6 was preferentially converted to 14 (21-23% yields, 92-97% ee). As an application of this reaction, formal synthesis of (+)-bakkenolide A was achieved.  相似文献   

16.
Photoinduced electron transfer reactions of the title N-acyl-α-dehydronaphthylalaninamides [(Z)-1] with (S)-1-phenylethylamino and (S)-alaninamide auxiliary groups in methanol containing a tertiary amine were shown to form (R,S)- and (S,S)-3,4-dihydrobenzo[f]quinolinone derivatives (2) in excess at rt, respectively. The magnitude of diastereomeric excess (de) was varied in the range of −5-26% for (R,S)-2 and 16-92% for (S,S)-2, depending on the chiral auxiliary and reaction temperature. The mechanism of asymmetric induction in the photocyclization process eventually affording diastereomeric 2 was discussed based on solvent, tertiary amine, chiral auxiliary and temperature effects on the de value as well as on MM2 and PM5 calculations for the diastereomeric enol intermediates.  相似文献   

17.
(S)-2-(4-Bromo-2,4′-bithiazole)-1-(tert-butoxycarbonyl)pyrrolidine ((S)-1) was obtained as a single enantiomer and in high yield by means of a two-step modified Hantzsch thiazole synthesis reaction when bromoketone 3 and thioamide (S)-4 were used. Further conversion of (S)-1 into trimethyltin derivative (S)-2 broadens the scope for further cross-coupling reactions.  相似文献   

18.
Gelation of malonamides was investigated for the first time. Bis(phenylglycinol)malonamide 1, and methyl-, dimethyl-, ethyl-, diethyl- and isopropylmalonamides 2, 3, 4, 5 and 6, respectively, exhibited profoundly different gelling properties. Monoalkyl malonamides are efficient organogelators, and their gelling properties strongly depend on their stereochemistry. In contrast, symmetrically substituted dialkymalonamides, that is, (R,R)-dimethylmalonamide 3 and (R,R)-diethylmalonamide 5 as well as the unsubstituted 1 lack any gelation ability. Methyl derivative (R,R)-2 is an excellent, and its ethyl analogue (R,R)-4 a moderate gelator of toluene, p-xylene and tetralin while the isopropyl derivative (R,R)-6 shows only very weak gelation of tetralin and some more polar solvents. Meso diastereoisomers (R,r,S)-2 and (R,s,S)-2, as well as (R,r,S)-4 and (R,s,S)-4), each possessing a pseudoasymmetric centre represent very rare examples of gelling meso-compounds. The racemate 4 (rac-4) showed more efficient gelation of some solvents than the pure enantiomer (R,R)-4, while rac-2 failed to gel any of the solvents which were efficiently gelled by (R,R)-2.  相似文献   

19.
A diastereoselective approach to (2R,5S)- and (2S,5S)-2-methyl-1,6-dioxaspiro[4.5]decane 1 and 1a is described. The route starts with an alkylation reaction among the cyclopentanone N,N-dimethylhydrazone 6 and the chiral iodides (R)-3 or (S)-3, derived from the enantiomers of ethyl β-hydroxybutyrate, controlling the estereocenter at C-2 of the molecules. The alkylated products 7 and 7a were easily transformed into the 1,8-O-TBS-1,8-dihydroxy-5-nonanones 9 and 9a in four steps, and a subsequent stereoselective spiroketalization, in acidic media, afforded a Z:E mixture (1:2) of compounds 1 and 1a.  相似文献   

20.
β2-(3,4-Dihydroxybenzyl)-β-alanine [β2-Homo-Dopa, 1] is a novel β-amino acid homologue of Dopa, the most successful therapeutic agent in the treatment of Parkinson's disease. Enantioenriched (R)-1 and (S)-1 were obtained via the diastereoselective alkylation of enantiopure pyrimidinone (R)- and (S)-3, chiral derivatives of β-alanine, with veratryl iodide. The major diastereomeric products (2S,5R)-4 and (2R,5S)-4 were hydrolyzed with 57% HBr, and the desired β-amino acids were purified by silica gel chromatography. Alternatively, enantioenriched (R)- and (S)-1 were prepared by means of the highly diastereoselective alkylation (3,4-dimethoxybenzyl iodide) of open-chain β-aminopropionic acid derivatives (R,R,S)-8 and (S,S,R)-8 containing the chiral auxiliary α-phenylethylamine. Finally, nearly enantiopure (R)- and (S)-1 were obtained by resolution of racemic N-benzyloxycarbonyl-2-(3,4-dibenzyloxybenzyl)-3-aminopropionic acid, rac-12, with (R)- or (S)-α-phenylethylamine, followed by catalytic hydrogenolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号