首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Reaction of 1-propylamino-4-acetato-1,4,7-triazacyclononane (L1), 1-benzyl-4-acetato-1,4,7-triazacyclononane (L2) and 1-benzyl-4-propylamino-1,4,7-triazacyclononane (L3) with a copper(II) salt gave Na2[CuL1](ClO4)3(1a), [CuL2]Cl (2) and [Cu2L32](ClO4)4.5H2O (3), respectively. [CuL4]ClO4 (4) was formed by reacting 1-formyl-4-ethylacetato-1,4,7-triazacyclononane with cupric chloride in aqueous solution. The X-ray crystal structures of the complexes reveal that the ligands generate distorted square pyramidal or square planar coordination environments about the Cu(II) centre, but in three complexes (1b, 3 and 4) weak interactions to an oxygen atom from a perchlorate anion and, in the case of 4, also to an amide nitrogen leading to tetragonally elongated octahedral Cu(II) geometries. In 4, the formyl group is found to reduce the coordinating ability of the macrocyclic nitrogen to which it is attached, as evidenced by the weak CuN interaction. The formation of five-membered chelate rings on coordination of the ligands further contributes to the distortion from the ideal geometries. The crystal lattices contain a number of novel supramolecular features. 1a contains a negatively charged sodium perchlorate chain of composition [Na2(ClO4)3]x(x-), with a complex series of Na-O-Na bridges flanked by [CuL1]+ units, while 3 contains highly complex hydrogen bonded sheets approximately 20 A thick that stack through van der Waals interactions. One-dimensional chains comprised of copper complexes are found in 2 and 4, and are held together by hydrogen bonds in 2 and acetate bridges between the copper cations in 4. The solution EPR spectra indicate that the copper(II) centres exist in isolated distorted square pyramidal (possibly square planar for 4) environments, while in the solid state there is evidence for the existence of weak exchange and dipole-dipole coupling for some complexes.  相似文献   

2.
A series of new diazamesocyclic ligands based on a diazamesocycle, 1,5-diazacyclooctane (DACO), functionalized by additional donor groups--1,5-bis(N-1-methylimidazol-2-ylmethyl)-1,5- diazacyclooctane (L1), 1-(2-hydroxybenzyl)-1,5-diazacyclooctane (HL2), 1,5-bis(2-hydroxybenzyl)-1,5-diazacyclooctane (H2L3), and 1-(N-1-methylimidazol-2-ylmethyl)-1,5-diazacyclooctane (L4)--and their Cu(II) complexes have been synthesized and characterized. Single-crystal X-ray diffraction analysis of the four Cu(II) complexes revealed that L1 forms a five-coordinate mononuclear complex, HL2 a N3- mu-bridged binuclear complex, H2L3 an oxygen mu-bridged trinuclear complex, and L4 a one-dimensional zigzag coordination polymeric complex with Cu(II). [CuL1ClO4](ClO4) (I): a = 12.194(2) A, b = 13.351(3) A, c = 14.473(3) A, beta = 107.10(3) degrees, Z = 4. [CuL2(N3)]2 (II): a = 8.1864(6) A, b = 18.141(2) A, c = 9.3307(7) A, beta = 103.662(6) degrees, Z = 2. [Cu3(L3)2Cl2] (III): a = 10.7296(13) A, b = 13.7707(17) A, c = 13.5523(17) A, beta = 106.350(3) degrees, Z = 2. ([CuL4Cl]2ClO4) infinity (IV): a = 7.279(1) A, b = 23.695(5) A, c = 19.308(4) A, beta = 100.28(3) degrees, Z = 8. All four complexes crystallize in the monoclinic crystal system with the P2(1)/c space group, and each Cu(II) center coordinated with DACO is pentacoordinated with a distorted square-pyramidal or trigonal-bipyrimidal coordination environment. In complex IV, the binuclear cation unit [CuL4Cl]2(2+) constitutes the fundamental building block of an infinite alternating zigzag chain structure, and the binuclear unit contains two types of geometries around the Cu(II) centers: the Cu(1) center is a distorted square-pyramidal environment, while the Cu(2) is a distorted trigonal-bipyramidal coordination environment. To the best of our knowledge, this is the first Cu(II) complex of a diazamesocyclic ligand with an infinite polymeric structure. The magnetic properties of complexes II, III, and IV have been investigated by variable-temperature magnetic susceptibility measurements in the solid state. The obtained parameters are 2J = 2.06 cm-1 (II), -345.56 cm-1 (III), and -2.60 cm-1 (IV), which differ greatly from ferromagnetic to weak and strong antiferromagnetic coupling. These results unequivocally indicate that the nature of the pendant arms is a key factor governing the structure and properties of the complexes; therefore, the coordination modes and properties of the metal complexes of a diazamesocycle can be controlled by altering the pendant donors on it. Magneto-structural correlation has been precisely analyzed, and the solution properties of these complexes have also been described.  相似文献   

3.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

4.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

5.
A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.  相似文献   

6.
Copper(II) azide complexes of three tridentate ligands namely 2,6-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L), 2,6-(pyrazol-1-ylmethyl)pyridine (L'), and dipropylenetriamine (dpt) yield three kinds of complexes with different azide-binding modes. The ligand L forms two end-on-end (mu-1,3) diazido-bridged binuclear complexes, [CuL(mu-N(3))](2)(ClO(4))(2) (1) and [CuL(mu-N(3))(ClO(4))](2).2CH(3)CN (2), and L' forms a perchlorato-bridged quasi-one-dimensional chain complex, [CuL'(N(3))(ClO(4))](n)() (3) with monodentate azide coordination. The ligation of dipropylenetriamine (dpt) gives a end-on (mu-1,1) diazido-bridged binuclear copper complex [Cu(dpt)(mu-N(3))](2)(ClO(4))(2) (4). The crystal and molecular structures of these complexes have been solved. Variable-temperature EPR results of 1 and 2 are identical and indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former dominating at low temperatures and the latter at high temperatures. The unusual temperature-dependent magnetic moment and EPR spectra of this dimer reveal the presence of temperature-dependent population of two triplet states, one being caused by antiferromagnetic and the other by ferromagnetic interaction, the former transforming to the latter on cooling. While the interaction of ground spin doublets of the two metal centers gives rise to a ferromagnetic coupling of J(g) = 90.73 cm(-1), the other coupling of J(e) = -185.64 cm(-1) is suggested to be caused by the interaction between an electron in one metal center and an electron from the azide of the other monomer by excitation of a d-electron to the empty ligand orbital. The ferromagnetic state is energetically favored by 104.39 cm(-1). Compound 3 exhibits axial spectra at room temperature and 77 K, and variable-temperature magnetic susceptibility data indicate that the copper centers form a weakly antiferromagnetic one-dimensional chain with J = -0.11 cm(-1). In the case of 4, the unique presence of two nonidentical dimeric units with different bond lengths and bond angles within the unit cell as inferred by crystal structure is proved by single-crystal EPR spectroscopy.  相似文献   

7.
New homo trinuclear Zn(II) complexes [Zn(3)L(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O, 1, and [Zn(3)L(1)(micro-OAc)].ClO(4).PF(6).5CH(3)OH.H(2)O, 2, and hetero trinuclear complex [Zn(2)CuL(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O,3, of optically active hexaaza triphenolic macrocycle H(3)L(1) were synthesized and crystallographically characterized. The cation [Zn(3)L(1)(micro-OAc)](+) structure of 1 and 2 closely resembles the trinuclear Zn(II) active site of P1 nuclease. The distorted tetrahedral geometry of Zn3 was successfully reproduced at Cu1 in complex 3. The complexes 2 and 3 cleave CT DNA at 37 and 50 degrees C.  相似文献   

8.
Three new trinuclear copper(II) complexes, [(CuL(1))(3)(micro(3)-OH)][ClO(4)](2).3 H(2)O (1), [(CuL(2))(3)(micro(3)-OH)][ClO(4)](2).H(2)O (2), and [(CuL(3))(3)(micro(3)-OH)][ClO(4)](2).7 H(2)O (3) have been synthesized from the three tridentate Schiff bases HL(1), HL(2), and HL(3) (HL(1)=6- aminomethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, HL(2)=6-aminoethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, and HL(3)=6-aminodimethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one). They have been characterized by X-ray crystallography and IR and UV spectroscopy, and their magnetic properties have been investigated. All the compounds contain a partial cubane [Cu(3)O(4)] core consisting of the trinuclear unit [(CuL)(3)(micro(3)-OH)](2+), perchlorate ions, and water molecules. In each of the complexes, the copper atoms are five-coordinate with a distorted square-pyramidal geometry except complex 1, in which one of the Cu(II) of the trinuclear unit is weakly coordinated to one of the perchlorate ions. Magnetic measurements performed in SQUID MPMS-XL7 using polycrystalline samples at an applied field of 2 kOe indicate a global intramolecular ferromagnetic coupling. Magnetostructural correlations have been calculated on the basis of theoretical models without symmetry restriction. Continuous shape measurements are an appropriate tool for establishing the degree of distortion of the Cu(II) from square-planar geometry. Structural, theoretical, and experimental magnetic data indicate that the higher the degree of distortion, the greater the ferromagnetic coupling.  相似文献   

9.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

10.
系统研究了1,4,7-三(2-羟基丙基)-1,4,7-三氮环壬烷(L1)和1,2-双[N,N′-二(2-羟基丙基)-1,4,7-三氮杂环壬基]乙烷(L2)铜配合物([CuL1](ClO4)(NO3)和[Cu2L2](ClO4)4])以及锌配合物([ZnL1](ClO4)2)与CT-DNA的相互作用以及核酸酶活性和催化磷酸酯水解功能。两个铜配合物对DNA切割具有浓度、时间和pH依赖性。荧光和CD光谱实验表明[Cu2L2](ClO4)4能插入DNA双螺旋中。配位饱和的[ZnL1](ClO4)2和[Cu2L2](ClO4)4能催化对硝基苯磷酸单酯水解生成对硝基苯,[ZnL1](ClO4)2和[Cu2L2](ClO4)4催化磷酸单酯水解的表观一级反应速率常数分别为2.8×10-5min-1和5.9×10-6min-1。  相似文献   

11.
Two new N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle, 1-benzyl-4,7-dimethyl-1,4,7-triazacyclononane (L2) and 1,4,7-tris(3-cyanobenzyl)-1,4,7-triazacyclononane (L3), have been prepared and, together with 1,4-dimethyl-1,4,7-triazacyclononane (L1), have been used to synthesize the corresponding hydroxo-bridged binuclear copper (II) complexes, [Cu2(mu-OH)2L2](ClO4)2.xH2O (1 L = L1, x = 0; 2 L = L2, x = 1; 3 L = L3, x = 2). The X-ray crystal structures of all three complexes reveal the presence of [Cu2(mu-OH)2]2+ cores capped by pairs of facially coordinating tacn ligands so that the Cu(II) centers reside in distorted square pyramidal coordination environments. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -36.4 cm(-1)) between the Cu(II) centers in 1, while the centers in 2 and 3 have been shown to interact ferromagnetically (J = 11.2 and 49.3 cm(-1), respectively). The variation in the strength and sign of these interactions has been rationalized in terms of the differing geometries of the [Cu2(mu-OH)2]2+ cores. The ability of the Cu(II) complexes to cleave phosphate ester bonds has been probed using the model phosphate ester bis(4-nitrophenyl)phosphate (BNPP) at pH 7.4 and a temperature of 50 degrees C. The measured rate constant for 3 (3 x 10(-4) s(-1)) is significantly greater than those previously reported for the Cu(II) complexes of the fully alkylated tacn ligands, Me3tacn and iPr3tacn, which until now have been rated as the most effective tacn-based phosphate ester cleavage agents.  相似文献   

12.
The new [2 + 2] Schiff-base macrocyclic ligand L2, containing pyridazine head units and pyridine pendant arms, was synthesised as [Ba(II)2L2(ClO4)4(OH2)] 1 from the barium(II) ion templated condensation reaction of 3,6-diformylpyridazine and N1-(2-aminoethyl)-N1-(methylene-2-pyridyl)-ethane-1,2-diamine. Subsequent transmetallation reactions of 1 with copper(II), iron(II) and manganese(II) perchlorates led to the formation of [Cu(II)2L2](ClO4)4.2MeCN 2, [Fe(II)2L2(MeCN)2](ClO4)4 3 and two manganese complexes, 4 and 5, with the same formula, [Mn(II)2L2(MeCN)(OH2)](ClO4)4, but slightly different crystal structures, respectively. Single-crystal X-ray structural analyses reveal the variety of structures which can be supported by L2 in order to meet the coordination environment preferences of the incorporated metal ions. The barium(II) ions in 1 have an irregular ten-coordinate geometry whereas the copper(II) ions in 2 have a square pyramidal geometry and the iron(II) ions in 3 have an octahedral geometry, while in 4 and 5 every manganese(II) ion is seven-coordinate and the environment can be best described as distorted pentagonal bipyramidal. In 1, 4 and 5 the pyridazine moieties bridge the metal centres [Ba(1)...Ba(2) 4.9557(3)A 1; Mn(1)...Mn(2) 4.520(1)A 4; Mn(1)[dot dot dot]Mn(2) 4.3707(8)A 5] but this is not observed in the copper(II) and iron(II) complexes, 2 and 3, in which the metal ions are well separated [Cu(1)...Cu(2) 5.9378(6)A 2; Fe(1)...Fe(2) 5.7407(12)A 3]. In the cyclic voltammogram of [Cu2(II)L2](ClO4)4.2MeCN 2 in MeCN vs. Ag/AgCl two separate reversible one-electron transfer steps are observed [E(1/2)=0.04 V, DeltaE= 0.12 V and E(1/2)= 0.20 V, DeltaE=0.12 V; K(c)=510; in this system E(1/2)(Fc+/Fc)=0.42 V and DeltaE(Fc+/Fc)=0.08 V]. The other complexes cannot be reversibly reduced/oxidised.  相似文献   

13.
A tetra-nuclear, star-shaped hetero-metallic copper(II)-manganese(II) complex, [{CuL(H(2)O)}(2)(CuL)Mn](ClO(4))(2) (1) has been synthesized by reacting the "complex as ligand" [CuL] with Mn(ClO(4))(2) where H(2)L is the tetradentate di-Schiff base derived from 1,3-propanediamine and 2-hydroxyacetophenone. Upon treatment with the polyatomic anions azide, cyanate, or thiocyanate in methanol medium, complex 1 transforms into the corresponding trinuclear species [(CuL)(2)Mn(N(3))(2)] (2), [(CuL)(2)Mn(NCO)(2)] (3) and [(CuL)(2)Mn(NCS)(2)] (4). All four complexes have been structurally and magnetically characterized. In complex 1 the central Mn(II) ion is encapsulated by three terminal [CuL] units through the formation of double phenoxido bridges between Mn(II) and each Cu(II). In complexes 2-4 one of the CuL units is replaced by a couple of terminal azide, N-bonded cyanate or N-bonded thiocyanate ions respectively and the central Mn(II) ion is connected to two terminal Cu(II) ions through a double asymmetric phenoxido bridge. Variable temperature magnetic susceptibility measurements show the presence of moderate ferrimagnetic exchange interactions in all the cases mediated through the double phenoxido bridges with J values (H = -JS(i)S(i + 1)) of -41.2, -39.8 and -12.6 cm(-1) (or -40.5 and -12.7 cm(-1) if we use a model with two different exchange coupling constants) for the tetranuclear MnCu(3) cluster in compound 1 and -20.0, -17.3 and -32.5 cm(-1) for the symmetric trinuclear MnCu(2) compounds 2-4. These ferrimagnetic interactions lead to spin ground states of 1 (5/2 - 3*1/2) for compound 1 and 3/2 (5/2 - 2*1/2) for compounds 2-4.  相似文献   

14.
Three copper polypyridyl complexes were examined as electrocatalysts for the oxygen reduction reaction (ORR): a Cu-N(3) complex, [Cu-[tris(6-methylpyridin-2-yl)methane]-(NCMe)]PF(6) (1); a related Cu(2)N(6) derivative, [Cu(2)-[1,2-bis(6-(bis(6-methylpyridin-2-yl)methyl)pyridin-2-yl)ethane]-(NCMe)(2)](PF(6))(2) (2); and the CuN(4) species [Cu-[tris(pyridin-2-ylmethyl)amine]](ClO(4))(2) [3](ClO(4))(2). Compared to other copper complexes, [3](ClO(4))(2) exhibits the highest reported ORR onset potential for a Cu complex of 0.53 V vs reversible hydrogen electrode at pH 1. The Cu(2)N(6) hemocyanin model is more active than the CuN(3), but both are less active than the CuN(4) complex. The results indicate that copper polypyridyl complexes are promising cathode catalysts for ORR.  相似文献   

15.
Mononuclear and binuclear copper(II) complexes (1-8) with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR, electronic and EPR spectra of the complexes have been obtained. The thiosemicarbazones bind to metal as dianionic ONS donor ligands in all the complexes except in [Cu(HL1)2] (2) and [Cu(HL2)2] (6). In compounds 2 and 6 the ligands are coordinated as monoanionic HL- ones. The magnetic susceptibility measurements indicate that all the complexes are paramagnetic. In complex [(CuL1)2] (1), the magnetic moment value is lower than the expected spin only value. In all the complexes g(||)>g( perpendicular)>2.0023 and G values within the range 2.5-3.5 are consistent with dx2-y2 ground state. The complexes were given the formula as [(CuL1)2] (1); [Cu(HL1)2] (2); [CuL1bpy] (3); [CuL1phen] (4); [CuL1gamma-pic].2H2O (5); [Cu(HL2)2] (6); [CuL2py].3H2O (7); [CuL2bipy] (8). The structure of the compound 8 have been solved by single crystal X-ray crystallography and was found to be distorted square pyramid around copper(II) ion.  相似文献   

16.
The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 ?, while the axial distances are of 2.276 and 2.309 ?. The lower stability of the CuL2(2+) complex and its capability of forming protonated and hydroxo complexes suggest a penta-dentate coordination of the ligand, in agreement with the type of substitution at the quinoline ring. Kinetic studies on complex formation can be interpreted by considering that initial coordination of L1 and L2 takes place through the nitrogen atom in the quinoline ring. This is followed by coordination of the remaining nitrogen atoms, in a process that is faster in the L1 complex probably because substitution at the quinoline ring facilitates the reorganization. Kinetic studies on complex decomposition provide clear evidence on the occurrence of the molecular motion typical of scorpiands in the case of the L2 complex, for which decomposition starts with a very fast process (sub-millisecond timescale) that involves a shift in the absorption band from 643 to 690 nm.  相似文献   

17.
A new Cd(II) complex [Cd3(L)3(mu3-CO3)](ClO4)4.2CH3CN (1) with two-dimensional (2D) network structure was obtained by reaction of an imidazole-containing tripodal polyamine ligand N1-(2-aminoethyl)-N1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(ClO4)2.6H2O at pH 9.0 in air. The carbonate anions (CO3(2-)) are from the hydration of the atmospheric carbon dioxide, which is the same as in the previously reported Cu(II) complex [Cu3(L)3(mu3-CO3)](ClO4)4.3CH3CN (2). However, the coordination mode of CO3(2-) in 1 is mu3-eta2:eta2:eta2 while the one in 2 is mu3-eta1:eta1:eta1. One-dimensional (1D) chain Cd(II) and Cu(II) complexes [Cd(L)Cl]ClO4.H2O (3) and [Cu(L)(H2O)](ClO4)2 (4) without CO3(2-) were prepared by a similar method as that for 1 and 2 except for the different reaction pH, namely, 3 and 4 were obtained at pH 7 while 1 and 2 were obtained at pH 9. In addition, when Cu(NO3)2 was used to react with L at pH 9, a unique 1D double-stranded helical chain complex [Cu(L)Cl]NO3.1.25H2O (5) was obtained. The results revealed that the reaction pH and the counteranion have great impact on the carbon dioxide absorption and hydration as well as on the assembling and structure of the complexes. The magnetic property of complex 2 was investigated in the temperature range of 1.8-300 K, and weak ferromagnetic coupling among the mu3-eta1:eta1:eta1-CO3(2-) bridged Cu(II) atoms was observed.  相似文献   

18.
The synthesis and characterization of two new macrocyclic ligands, the bis-macrocyclic compound 2,6-bis(1,4,13-triaza-7,10-dioxacyclopentadec-1-ylmethyl)phenol (L) and 38-methoxy-1,4,13,16,19,28-hexaaza-7,10,22,25-tetraoxatricyclo[14.14.7.1(32,36)]octatriconta-32,34,Delta(36,38)-triene (L1) are reported. Equilibrium studies of basicity and coordination properties toward metal ions such as Cu(II), Zn(II), Cd(II) and Pb(II) were performed for ligand by potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I= 0.15 mol dm(-3)). L behaves as a hexaprotic base (logK(1)= 10.93, logK(2)= 9.70, logK(3)= 8.79, logK(4)= 8.05, logK(5)= 6.83, logK(6)= 2.55). All metal ions form stable mono- and dinuclear complexes: logK(MLH(-1))= 25.61 for Cu(II), 15.37 for Zn(II), 12.58 for Cd(II) and 13.79 for Pb(II); logK(M(2)LH(-1))= 31.61 for Cu(II), 23.38 for Zn(II), 24.49 for Cd(II) and 23.68 for Pb(II). All these dinuclear species show a great tendency to add the OH(-) group: the equilibrium constant for the addition reaction was found to be logK(M(2)LH(-1)OH)= 4.77 for Cu(II), 5.66 for Zn(II), 2.8 for Cd(II) and 3.18 for Pb(II). In the case of Ni(II), kinetic inertness prevents the possibility of solution studies. The dinuclear solid adducts [Ni(2)H(-1)L(N(3))(3)].EtOH and [Cu(2)H(-1)L(N(3))](ClO(4))(2) were characterized by X-ray analysis.  相似文献   

19.
The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.  相似文献   

20.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号