首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The existence of shape selectivity in non-covalent molecularly imprinted polymers (MIPs) has been proven using molecular probes. Twelve secondary amines with different sized side chains were imprinted, and enantioselectivity evaluated by HPLC for each amine on each imprinted polymer. Trends in the quantitative structure-binding relationships (QSBR) revealed two major contributions of cavity structure on selectivity afforded by molecularly imprinted polymers. First, sterics play a dominant role in cases where a molecules structure is too big too fit into an imprinted site formed from a smaller template molecule; e.g. on MIPs made with small templates, large analytes give separation factors (α) close to 1.0 (no selectivity), while small analytes give α values of 1.4. Second, molecular structures that are equal to or smaller than those of the template molecule are selected by maximizing Van der Waals interactions within the MIP binding site. Thus, MIPs made with large analytes give α values up to 2.5, while small analytes on the same MIPs give α values closer to 1.1. Template structure also has an effect on MIP enantioselectivity; e.g. branched structures exhibit a 1.7-fold improvement in separation factors (α) by MIPs made for isopropyl versus propyl derivatives, and cyclohexyl versus hexyl derivatives. Full details of these trends are provided in the text.  相似文献   

2.
Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent.  相似文献   

3.
利用分子烙印手性固定相串联柱同时拆分两对对映体   总被引:12,自引:1,他引:11  
采用复合功能单体制备了苯甲氧羰基-L-丝氨酸(N-Cbz-L-Ser)和苯甲氧羰基-L-丙氨酸(N-Cbz-L-Ala)烙印的分子烙印手性固定相。采用柱串联的方法,一次进样手性分离了苯甲氧羰基-DL-丝氨酸(N-Cbz-DL-Ser)和苯甲氧羰基-DL-丙氨酸(N-Cbz-DL-Ala)两对对映体,显示了分子烙印手性固定相在多对对映体同时手性分离的发展潜力。  相似文献   

4.
The aim of this study was to observe the chiral separation of a series of C2-asymmetric bi-naphthyl compounds on molecularly imprinted polymers (MIPs) using 1,1′-bi-2-naphthol (BINOL) as template. MIP prepared using 4-vinylpyridine as the functional monomer showed better chiral recognition for the template than the MIPs prepared using acrylamide, 2-(diethylamino)ethylmethacrylate and 2-vinylpyridine, respectively. 1H-NMR was used for comparison of the interactions between template and functional monomers. For chromatographic analysis the effects of mobile phase and temperature on the chiral separation were investigated. When 4-vinylpyridine was employed as the functional monomer, chiral separation of 1,1′-bi-2-naphthol and its analogues were studied. The MIP also demonstrated an ability to discriminate between enantiomers of structurally related compounds that had not been imprinted. The thermodynamic parameters of interactions between substrates and MIP in acetonitrile based mobile phase were investigated by the Van’t Hoff equation. In this study, the specific hydrogen-bonding interactions seemed to be the key factor to achieve chiral separation.  相似文献   

5.
Polymers imprinted with (S)-4-phenyl-2-oxazolidone and (S)-4-benzyl-2-oxazolidone have been prepared by non-covalent imprinting. A combinational procedure was used to optimize the functional monomer and crosslinker. A copolymer of methacrylic acid and divinylbenzene resulted in the best chiral recognition. The ratio of template to functional monomer and solvent in the pre-polymerization mixture were also optimized. The imprinted polymers were used as stationary phases in high-performance liquid chromatography. The MIPs were more selective when prepared using a less polar solvent, except for toluene. Effective separations of the enantiomers of racemic 4-phenyl-2-oxazolidone and 4-benzyl-2-oxazolidone were achieved by use of acetonitrile as mobile phase; no cross-selectivity was observed. Interactions between functional monomers and template were investigated by 1H NMR spectroscopy. The results suggest that hydrogen-bonding between the functional monomer and the template and π–π stacking interaction between the cross-linker and the template may contribute to chiral recognition.  相似文献   

6.
Molecularly imprinted polymers (MIPs) for the recognition of nitro derivatives are prepared from three different (thio)urea-bearing functional monomers. The binding capability of the polymers is characterized by a batch binding experiment. The imprinting factors and affinity constants (K) of the imprinted polymers exhibit the same tendency as the binding constants (Ka) of the functional monomers to the target substance in solution. Not only nitrofurantoin is efficiently bound by these MIPs but also a broad spectrum of other nitro compounds is bound with at the intermediate level, addressing that these (thio)urea-based monomers can be utilized to prepare a family of MIPs for various nitro compounds, which can be applied as recognition elements in separation and analytical application.  相似文献   

7.
采用丙烯酸胺+2-乙烯基吡啶复合功能单体烙印了刚性较小的苯甲氧羰基-L-丝氨酸、苯甲氧羰基-L-丙氨酸和具有一定刚性的苯甲氧羰基-L-脯氨酸,发现丙烯酸胺+2-乙烯基吡啶体系对于分子刚性较小的分子也具有很好的烙印效果,表明不是烙印分子的刚性而是带有的与功能单体作用的化学功能基团才是实现分子烙印的关键.  相似文献   

8.
李振群  贾丽 《色谱》2020,38(9):1046-1056
手性药物通过与生物体内生物大分子之间的手性匹配与分子识别来发挥药理作用。两个对映体与体内手性环境相互作用的不同导致每个对映体表现出不同的药理活性、代谢过程、代谢速率及毒性等药代动力学特征。因此发展手性药物的拆分方法,对于手性药物的开发和生产过程的质量监控具有重要意义。分子印迹聚合物(MIPs)是以目标分子作为模板而制备的高分子聚合物,它具有特定的空间分子结构和官能团,对目标分子具有高度的特异性识别能力。基于该特点,MIPs非常适合于手性药物的拆分和纯化。毛细管电色谱(CEC)可同时基于毛细管电泳和液相色谱的分离机理对目标物进行分离,因此具有高分离效率和高选择性的特点。将MIPs材料作为CEC的固定相,可将这两种技术的优势结合,从而实现对手性药物的高效拆分。MIPs材料在1994年首次应用于CEC手性拆分,此后该研究领域开始获得关注和发展。MIPs材料主要通过4种模式在CEC中实现手性拆分,分别是作为开管柱、填充柱和整体柱的固定相以及分离介质中的准固定相。该综述以这4种模式作为分类基准,根据MIPs制备所需的材料和分离对象对其在CEC手性拆分中的应用进行了总结,揭示了MIPs在CEC手性拆分中的潜力,同时评述了这4种模式各自的优势与不足,并对将来MIPs在CEC手性拆分中的发展进行了展望。  相似文献   

9.
The chlorogenic acid (CGA) surface-imprinted magnetic polymer nanoparticles have been prepared via water-in-oil-in-water multiple emulsions suspension polymerization. This kind of molecularly imprinted polymer nanoparticles (MIPs) had the core-shell structure with the size of about 50 nm. Magnetic susceptibility was given by the successful encapsulation of Fe3O4 nanoparticles with a high encapsulation efficiency of 19.3 wt%. MIPs showed an excellent recognition and selection properties for the imprinted molecule CGA. The recognition capacity of MIPs was near three times than that of non-imprinted polymer nanoparticles (NIPs). Compared with the competitive molecule caffeic acid (CFA), the selectivity of MIPs for CGA was 6.06 times as high as that of NIPs. MIPs could be reused and regenerated, and their rebinding amount in the fifth use was up to 78.85% of that in the first use. The MIPs prepared were successfully applied to the separation of CGA from the extract of Traditional Chinese Medicine Honeysuckle.  相似文献   

10.
Molecularly imprinted polymers (MIPs), using (S)-naproxen as template and the combination of butyl methacrylate (BMA) and MAA (1:1 molar ratio) as functional monomers were synthesized by an in situ polymerization reaction. The rendered monolithic column was evaluated in HPLC mode. The result showed that the monolithic MIPs with the combination of two monomers produced better chiral resolution of rac-naproxen (Rs=1.55) and column efficiencies of imprinted molecules (N=2860 plates/m)than that with pure MAA.  相似文献   

11.
Shim YH  Yilmaz E  Lavielle S  Haupt K 《The Analyst》2004,129(12):1211-1215
Non-covalently molecularly imprinted polymers (MIPs) for beta2-amino acids were prepared for the first time. N-(2-chlorobenzyloxycarbonyl)-(R)-beta2-homophenylalanine (N-2-ClZ-(R)-beta2-HPhe) was imprinted with methacrylic acid (MAA) and/or 4-vinylpyridine (4-VPy) as the functional monomers, with ethylene glycol dimethacrylate (EDMA) as the cross-linker. The MIPs made with different ratios of MAA:4-VPy were studied in HPLC mode. The results show that MIPs made with 4-VPy yielded the best chiral separation factor (alpha= 1.86) for the template molecule. The importance for an efficient separation of pi-stacking interactions between the MIPs and the template molecule is demonstrated. Racemates of Z-alpha-amino acids and beta-amino acid analogues of the template were either not or poorly resolved by the MIPs, thus demonstrating the close three-dimensional complementarity of the MIPs' recognition sites with the template.  相似文献   

12.
Thin-layer chromatography (TLC) based on molecularly imprinted polymers (MIPs) of alpha-agonists as chiral stationary phases was applied to the determination of enantiomers of various adrenergic drugs including alpha- and beta-agonists and beta-antagonists (beta-blockers). In this study, three MIPs imprinted with (+)-ephedrine, (+)-pseudoephedrine and (+)-norephedrine plus a non-imprinted polymer (non-MIP) were prepared, processed and coated on a glass support as thin layers. then enantiomeric determination of adrenergic drugs was carried out by development of their racemates on the TLC plates, using established conditions. From the results, the racemates of the compounds used as print molecules were well separated into two isomers on the MIP-plates, except on the plate based on MIP of (+)-norephedrine. Most adrenergic drugs structurally related to print molecules were completely resolved into two spots with the MIP plates. In general the retention of (+)-isomers (or 1S-isomers) was greater than that of (-)-isomers (or 1R-isomers), indicating the stereoselectivity of the MIPs with the former isomers. Moreover, the role between the chemical structures of the analytes with chiral recognition of the MIPs has been investigated. The proposed method enables rapid determination of enantiomers and screening of large numbers for optical purity of adrenergic drugs.  相似文献   

13.
分子印迹薄层色谱手性固定相的制备及其色谱性能   总被引:5,自引:0,他引:5  
戎非  李萍  冯小刚  袁春伟  付德刚 《色谱》2006,24(3):305-308
分别以右旋扁桃酸、右旋邻氯扁桃酸和右旋对氯扁桃酸为模板,丙烯酰胺、乙二醇二甲基丙烯酸酯为功能单体和交联剂合成分子印迹聚合物,并以此作为薄层色谱手性固定相。研究了模板分子消旋体在手性固定相上的分离情况,并讨论了展开剂中乙酸含量对分离的影响。在乙腈-5%乙酸展开体系中扁桃酸、邻氯扁桃酸和对氯扁桃酸消旋体得到较好的分离,分离因子分别为1.45,1.62和1.56。该手性固定相对模板分子的结构类似物也具有一定的手性交叉分离能力。讨论了分析物的化学结构对该手性固定相识别性能的影响。该方法为快速、灵敏地对手性物质分析、定性提供了一条简便的途径。  相似文献   

14.
This study aimed at elucidating the chiral recognition mechanism with molecularly imprinted polymers (MIPs) in aqueous environment. The system used ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), and 4-l-phenylalanylamino-pyridine (4-l-PheNHPy) as the cross-linking monomer, functional monomer and template, respectively, to assemble the imprinted polymer. A self-assembly mechanism, which includes the pre-organizing functional monomers around template before polymerization process, was proposed. This mechanism was supported by NMR titration test. Interactions between functional monomer and template were observed using UV-Vis spectroscopy of solutions of these components as well. These studies indicated a 1:2 molecular complex dominantly formed between 4-l-PheNHPy and MAA. Association constant was estimated to be 97,000 M−2. Based on these results, a model mainly involving two-spot interaction was proposed evolving from our reported concept of exact placement of functional group. Ionic interaction between the primary amino group of 4-l-PheNHPy and carboxylic acid group inside the microcavity on MIPs was believed to play a predominate role in the enantioselectivity as supported by the observation of the relationship between the retention factor of 4-l-PheNHPy and the pH of mobile phase. While thermodynamic study at different pH revealed that, the interaction between the pyridyl group of 4-l-PheNHPy and the carboxylic acid group on the MIPs is also strong, implying that it also plays a profound role in determining the highly chiral selectivity of MIPs.  相似文献   

15.
L-卡尼丁分子压印聚合物作为手性分离色谱固定相的研究   总被引:2,自引:0,他引:2  
以L-卡尼丁为模板分子,分别以α-甲基丙烯酸和丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为 剂,采用分子压印技术合成了对L-卡尼丁具有高选择性的分子压印聚合物。将所得聚合物用作高效液相色谱固定相,研究了它们对外消旋卡尼丁盐酸盐的拆分能力,分析结果表明,α-甲基丙烯酸作为功能单体所得聚合物对外消旋卡尼丁盐酸盐具有良好的拆分作用,其分离因子α为1.89。  相似文献   

16.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

17.
Shi XX  Xu L  Duan HQ  Huang YP  Liu ZS 《Electrophoresis》2011,32(11):1348-1356
Molecular crowding is a new concept to obtain molecularly imprinted polymers (MIPs) with greater capacity and selectivity, which could shift the equilibrium of a print molecule reacting with functional monomers in the direction of complex formation side. In this work, molecular crowding agent was first applied to the preparation of MIPs microparticles by precipitation polymerization. A new system of molecular crowding surrounding was developed, composed of polystyrene and tetrahydrofuran, in the presence of the template (S)-ofloxacin. Partial filling capillary electrochromatography (CEC) was utilized to evaluate imprinting effect of the resulting microparticles by chiral separations of ofloxacin. Some important parameters in the preparation, i.e. template to monomer ratio, influence of cross-linking monomers and functional monomer composition on the CEC separation of MIP microparticles were investigated. Baseline separation of ofloxacin (R(s) =1.53) was obtained under optimized conditions and the highest theory plate of the later eluent (S)-ofloxacin was 5400. The textural and morphological parameters for imprinted particles, such as Brunauer-Emmett-Teller surface areas, pore volumes and pore size distributions have also been determined. Compared to the MIP microparticle prepared by conventional precipitation polymerization, the (S)-ofloxacin-imprinted particles formed under molecular crowding conditions showed higher selectivity (α=1.09) and separation efficiency (<25 min) in the CEC mode.  相似文献   

18.
Highly selective molecularly imprinted polymers (MIPs) for solid-phase extraction and determination of furosemide in human plasma have been designed and prepared. In order to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation, a computational approach was developed. It was based on the comparison of the binding energy of the complexes between the template and functional monomers. Having confirmed the results of computational method, three MIPs were synthesized with different functional monomers, i.e. acrylamide (AAM), 4-vinylpiridine (4-VP) and acrylonitrile (ACN), and then evaluated using Langmuir-Freundlich (LF) isotherm. Using the MIP prepared by AAM as functional monomer, a molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC-UV) was developed for selective extraction and determination of furosemide in human plasma. For the proposed MISPE-HPLC-UV method, the linearity between responses (peak area) and concentration was found over the range of 75-3500 ng mL−1 with a linear regression coefficient (R2) of 0.997. The limit of detection (LOD) and quantification (LOQ) in plasma were 12.9 and 43.3 ng mL−1, respectively.  相似文献   

19.
Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting. Graphical Abstract
?  相似文献   

20.
Convection of molecularly imprinted polymers monolith in LC mode was discussed in this paper. On the MIPs monolith reported here, a flat van Deemter plot of height equivalent to a theoretical plate (HETP) versus superficial velocity was observed. This typical behavior, similar to perfusion packings, suggests that the unique pore structure of the MIPs monolith allowed convection-enhanced mass transfer. Column parameters, e.g., external porosities, internal porosity, column permeability and equivalent sphere dimension, were obtained. Intraparticle Peclet number (λ) was used to characterize the convection in the monolith. In addition, a ratio of the numbers of transfer units, T, for diffusion in the micropores and through-pores has been introduced to quantify the relative importance of the contribution from convection and diffusion to mass transfer. The results show that the flow in a MIP monolith is extremely sensitive to pore size distribution and can be tuned by polymerization parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号