首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This paper describes the results of the evaluation of an alternative solvation parameter model for ionizable compounds. The new model is described as Log(k) = Int + rR2 + spi2(H) + asigmaalpha2(H) + bsigmabeta2(H) + mVx + U/(1 + V10 (+/-(pH-Pk))). The first six terms are the usual solvation parameter equation for neutral solutes, and the last term represents the contribution to retention from the ionization of solutes. Retention data obtained for 30 solutes in acetonitrile/aqueous buffer mobile phases are used to evaluate the capability of the function using different pH/pK scales. Because the function is not linear, nonlinear least-squares analysis is used to perform the data processing. It is concluded that the model function describes similarly the retention of ionizable compounds to the literature model without the need to accurately measure the mobile phase pH and solute's pK. Accordingly, the function simplifies the application of linear solvation energy relationships (LSERs) to ionizable compounds, and allows us to easily predict their retention for chromatographic optimization.  相似文献   

3.
4.
5.
刘小兰  高薇  梁超  乔俊琴  王康  练鸿振 《色谱》2021,39(9):1021-1029
在离子对反相液相色谱(IP-RPLC)分析中,溶质保留受对离子(counter ion)的影响比较受人关注,但鲜有研究流动相中缓冲盐类型和离子对试剂中非对离子(non-counter ion)对溶质保留行为的影响。鉴于此,该文以14种磺酸化合物为研究对象,甲醇为有机调节剂,分别考察了3种缓冲盐体系(磷酸二氢铵、氯化铵和乙酸铵)和5种离子对试剂体系(四丁基溴化铵、四丁基磷酸二氢铵、四丁基硫酸氢铵、四丁基硝酸铵和四丁基乙酸铵)下强离解酸性化合物的IP-RPLC保留行为,通过比较不同流动相条件下得到的溶质log kw(100%水相作流动相时的保留因子)、S(线型溶剂强度模型线性回归得到的常数),以及CHI(色谱疏水指数,log kw/S),寻找保留行为规律。研究表明,流动相中的缓冲盐类型和离子对试剂非对离子均会影响化合物的log kwS值,所有化合物在氯化铵缓冲盐体系下具有最大的log kw值。相对于无机阴离子,离子对试剂中弱离解性有机阴离子(乙酸根)的存在有利于增加磺酸化合物的S值。通过对比不同条件下的保留行为,推测磺酸化合物的IP-RPLC保留机理中同时存在着离子对模型和动态离子交换模型。与log kw和S值不同,化合物的CHI值受缓冲盐类型以及离子对试剂非对离子的影响较弱。此外,研究发现化合物的表观正辛醇/水分配系数(log D)与log kwS、CHI之间均具有良好的线性相关性。不同缓冲溶液和不同离子对试剂非对离子条件下获得的log kwS值存在着一定的差异,而CHI值相对稳定,因此,CHI更适用于IP-RPLC中定量结构-保留行为关系模型的建立。  相似文献   

6.
7.
Summary The behaviour of various octadecyl commercial bonded phases are compared in classical reversed-phase chromatography and in ion-pair reversed-phase chromatography. Great differences are exhibited by the packings studied according to the polarity of the solutes. Whereas hydrocarbonaceous bonded phases show very similar selectivity versus apolar or weakly polar solutes, great differences are observed when analyzing more polar solutes even when ion-pair reversed-phase chromatography is performed.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

8.
Li J  Sun J  Cui S  He Z 《Journal of chromatography. A》2006,1132(1-2):174-182
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.  相似文献   

9.
10.
Summary The 2-benzoylbenzoic acid series was investigated by reversed-phase, high-performance, thin-layer and column chromatography using various alkylammonium salts and di(2-ethylhexyl)orthophosphoric acid as polar associating reagents. The effects of the individual substituents on retention were quantified by log k and RM values. The compounds investigated differing in molecular structure (hydrophilic and hydrophobic substituents) commonly occurring groups in drugs and biologically active substances provide information on molecular interaction in these ion-pair systems. The combined effects on retention of organic modifier and ion-pair reagent concentration were investigated.  相似文献   

11.
The activity coefficients at infinite dilution, , for 45 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water, in the ionic liquid 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB], were determined by gas–liquid chromatography at temperatures from 318.15 K to 368.15 K. The values of the partial molar excess Gibbs free energy , enthalpy , and entropy at infinite dilution were calculated from the experimental values obtained over the temperature range. The gas–liquid partition coefficients, KL were calculated for all solutes and the Abraham solvation parameter model was discussed. The values of the selectivity for different separation problems were calculated from and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], 1-decyl-3-methylimidazolium tetracyanoborate, [DMIM][TCB], and similar ionic liquids. The densities of [BMPYR][TCB] in temperatures range from 318.15 K to 368.15 K, the temperature of fusion and the enthalpy of fusion were measured.  相似文献   

12.
A linear solvation energy relationship model was used to characterize the retention behavior of a stationary phase based upon a nematic side-on liquid crystalline polymer (SOLCP) in reversed-phase liquid chromatography. The set of solutes was constituted of a high variety of compounds whose molecular sizes were considerably smaller than the mesogenic unit size. The results showed good statistical fits for these retention data in 65:35, 75:25 and 85:15 (v/v) methanol-water mobile phases. Both the cavity term and excess molar refraction are the most important favorable retention-governing parameters, whereas the solute hydrogen bond acceptor basicity is the most unfavorable retention parameter. Hydrophobicity and pi-pi interactions decrease strongly when the percentage of methanol increases, leading to an important retention decrease despite the fact that the hydrogen bond interaction weakens as the organic solvent is added. The shape recognition ability of this side-on liquid crystalline stationary phase on polycyclic aromatic hydrocarbon solutes is partly explained by the solutes' high polarizability due to the presence of pi-electrons. However, the solute polarizability is not sufficient and a stationary phase's "structure effect" must to be taken into account for the shape discrimination observed. The strong interaction between liquid crystal molecules caused likely a adsorption retention mechanism rather than a partition mechanism.  相似文献   

13.
14.
This paper describes the results of the evaluation of retention dependence on the physicochemical properties of solutes in linear gradient elution by reversed-phase liquid chromatography (RPLC) based on linear solvation energy relationships (LSERs). Retention time data on Inertsil ODS(3) column by linear gradient elution were collected for both acetonitrile-water and methanol-water binary mobile phases under various gradient steepness. Based on the LSERs, the retention times were linearly correlated with the physicochemical properties (size, dipolarity, and hydrogen bond donor-acceptor acidity and basicity) of solutes. As predicted by LSERs, very acceptable linear relationships are observed for both mobile phases. While the magnitudes of the coefficients are modified by the gradient steepness, their signs are consistent with those obtained by isocratic elution. As obtained for isocratic elution, the dominant factors to retention in linear gradient elution of RPLC are the solutes' size and hydrogen bond acceptor basicity. The conclusions of the study allow us to predict retention in chromatographic method development by gradient elution.  相似文献   

15.
Lepont C  Gunatillaka AD  Poole CF 《The Analyst》2001,126(8):1318-1325
The solvation parameter model is used to study the retention mechanism of neutral organic compounds on porous graphitic carbon with methanol-water mobile phases containing from 0-100% (v/v) methanol. The dominant contribution to retention is the cavity formation-dispersion interaction term, composed of favorable interactions in the mobile phase (hydrophobic effect) and additional contributions from adsorption on the graphite surface. Electron lone pair and dipole-type interactions in the adsorbed state result in increased retention. Hydrogen-bonding interactions are more favorable in the mobile phase resulting in lower retention. The changes in the system constants of the solvation parameter model for cavity formation-dispersion interactions and hydrogen-bond interactions are linearly related to the volume fraction of water in the mobile phase. The system constants for electron lone pair interactions and dipole-type interactions are non-linear and go through a maximum and minimum value, respectively, at a specific mobile phase composition. The solvation parameter model poorly predicts the retention properties of angular molecules. This is probably due to the failure of the characteristic volume to correctly model the contact surface area for the interaction of angular molecules with the planar graphite surface. General factors affecting the quality of model fits for adsorbents are discussed.  相似文献   

16.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

17.
18.
General models in reversed-phase liquid chromatography that have been extended to relate retention of ionizable compounds to mobile phase composition, pH and/or temperature are reviewed. In particular, the fundamentals and applications of the solvation parameter model, the polarity parameter model and several classical models based on empirical equations are presented and compared. A main parameter in all these models is the degree of ionization of the acid–base compound, which depends on both the pH of the mobile phase and the acid–base constant of the compound. Thus, on one hand, the different procedures for pH measurement in the mobile phase and their influence on the performance of the models are outlined. On the other hand, equations that relate the variation of the pH of the buffer and the pKa of the compound with the mobile phase composition and/or temperature are reviewed and their applicability to the retention models critically discussed.  相似文献   

19.
The aim of this work was to develop a model that accurately describes retention in liquid chromatography (LC) as a function of pH and solvent composition throughout a large parameter space. The variation of retention as a function of the solvent composition, keeping other factors constants, has been extensively studied. The linear relationship established between retention factors of solutes and the polarity parameter of the mobile phase, E(N)T, has proved to predict accurately retention in LC as a function of the organic solvent content. Moreover, correlation between retention and the mobile phase pH, measured in the hydroorganic mixture, can be established allowing prediction of the chromatographic behavior as a function of the eluent pH. The combination of these relationships could be useful for modelling retention in LC as a function of solvent composition and pH. For that purpose, the retention behavior on an octadecyl silica column of a group of diuretic compounds covering a wide range of physico-chemical properties were studied using acetonitrile as organic modifier. The suggested model accurately describes retention of ionizable solutes as concomitant effects of variables included and is applicable to all solutes studied. We also aimed to establish an experimental design that allows to reproduce to a good approximation the real retention surface from a limited number of experiments, that is from a limited number of chromatograms. Ultimately, our intention is to use the model and experimental design for the simultaneous interpretive optimization of pH and proportion of organic solvent of the mobile phase to be used in the proposed separation.  相似文献   

20.
In this paper, we present a combination of a key-solute test based on retention and separation factors of large probe solutes (carotenoid pigments) and a quantitative structure-retention relationship analysis based on the retention factors of small probe solutes (aromatic compounds), both performed in supercritical fluid chromatography, to investigate the different chromatographic behaviour of octadecylsiloxane-bonded stationary phases of all sorts: classical, protected against silanophilic interactions or not, containing polar groups (endcapping groups or embedded groups). The results indicate that the two approaches chosen (carotenoid test and solvation parameter model) are complementary and provide precise information on the chromatographic behaviour of ODS phases. The applicability of the classification to the selection of stationary phases is evidenced with some examples of separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号