首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two packing materials, C18 and PLRP-S, are studied for on-line trace enrichment of phenolic compounds in water. Various precolumns of different internal diameter are also tested and the addition of an ion-pair reagent to increase retention and thus, breakthrough volumes of phenolic compounds, is studied. Best results are obtained when a PLRP-S precolumn is coupled on-line with a C18 analytical column and DAD detector. Addition of TBA considerably increases breakthrough volumes. In contrast, when a C18 precolumn is used, breakthrough volumes are lower and it is impossible to determine TCP and PCP, under the experimental conditions used, because of interference of other nonpolar compounds in the samples. The performance of the system is evaluated with river and tap water and the preconcentration of 10 ml of sample in a PLRP-S precolumn involves a linear range between 1 g 1–1 and 20 l–1 and limits of determination between 0.5 g l–1 and 1 g l–1 are obtained.  相似文献   

2.
Summary A method has been developed for the determination of trace levels of 32 pesticides, 19 explosives and 16 polycyclic aromatic hydrocarbons (PAH) in water in three individual steps. Solid-phase enrichment (SPE) is coupled to high-performance liquid chromatography (HPLC) with a fully automated system. The organic pollutants are enriched on reusable cartridges packed with adsorbent materials: pesticides and explosives on a mixed bed of divinylbenzene-ethylvinylbenzene copolymers (LiChrolut EN?) and perfluorinated polyethylene (PolyF?), and polycyclic aromatic hydrocarbons on C18-modified silica (Zorbax? ODS1). Thermally assisted desorption (TAD) has been shown to increase the recovery of analytes significantly. As all enriched analytes are transferred to the detector, only fifty millilitres of sample is needed for each single on-line analysis, compared with at least a litre for conventional methods. The separation of the enriched organic analytes is performed on specialized HPLC columns based on reversed-phase materials. The limits of detection of the system employed were found to be below 100 ng L−1. Use of fluorescence detection for the polycyclic aromatic hydrocarbons resulted in limits of detection in the upper pg L−1 range. Thek values, number of theoretical plates, the recovery rates and the limits of detection of this method for fast screening of organic pollutants from three fifty-millilitre aqueous samples are described. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

3.
Summary Modifying the most common design for the on-line coupling of a precolumn to reversed phase LC with diode array detection has resulted in reduction of the broadening of the peaks which results when the compounds of interest are strongly retained by a highly hydrophobic sorbent. The modification consists of the desorption of the analytes trapped on the precolumn solely by the organic solvent used to modify the solvent strength of the mobile phase. Results obtained using this design were compared with those obtained with the conventional design, with C18 and PLRP-S precolumns. The performance of the system was also tested with a highly cross-linked styrene-divinylbenzene copolymer (ENVI-chrom P) precolumn for the determination of phenolic compounds in real samples. The advantages and disadvantages are discussed. Ion-pair solid phase extraction is used in order to increase the breakthrough volumes of more polar compounds, mainly phenol. The use of the new design enables phenolic compounds to be determined at the low μg L−1 level with limits of detection ranging between 0.1 and 2 μg L−1 in tap water when a 10 mL sample was analyzed.  相似文献   

4.
Summary Two analytical methods have been developed for the determination in water of 18 priority phenolics listed in US EPA method 604 and on EEC list 76/464. A solidphase extraction system using eight different sorbents packed in a precolumn was coupled on-line with a liquid chromatograph with UV detection. The ensuing method uses 50–100 mL of ground water; its performance was compared with that of an off-line method using Empore extraction disks and 1 L water samples. Phenol recoveries varied from <20 to 100% for concentrations in the range 0.1–10 g/L at an acid pH. The presence of the phenols in water was confirmed by using thermospray LC-mass spectrometry in the negative ion mode. The stability of the phenols in water was studied at a 10 g/l level in ground and estuarine water at acid pH (2.5–3) and at 4°C for 1 month. The system was validated by various interlaboratory exercises with samples containing 2,4,6-trichlorophenol and pentachlorophenol at concentrations from 0.1 to 0.5 g/L.  相似文献   

5.
A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min−1. The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g−1. The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required.  相似文献   

6.
A method based on on-line solid-phase extraction (SPE) coupling to high-performance liquid chromatography (HPLC) for the determination of estrogens has been developed. This method can continuously perform extraction of estrone, estradiol, estriol and diethylstilbestrol from aqueous samples without any other pretreatment, which can then be analyzed by HPLC with a UV detector at 230 nm. A pre-concentration column was adapted with methanol/water for chromatographic separation and two kinds of sorbents were involved, which are octadecyl-bonded silica and cigarette filter. The condition of pH of samples, sample loading flow rate and desorption time were all optimized, and the performances of both two sorbents were satisfactory. The on-line SPE system requires very low maintenance and just involved a switching-valve-filter system and a flow-inject pump, and the operation of the whole SPE-HPLC instrumentation is quite simple. The detection limits for pre-concentrating 50 mL of standard solution using cigarette filter as sorbent ranged from 0.98 to 78.1 ng L−1. The enhancement factors were in the range of 197-326. The recoveries of estrogens spiked in real water samples ranged from 85 to 112%. The precisions for nine replicate measurements of a standard mixture (5.0 μg L−1) were in the range of 1.0-3.4%.  相似文献   

7.
This paper describes the novel preparation of three kinds of nanofibers [poly(styrene-co-methacrylic acid), poly(styrene-co-p-styrene sulfonate), polystyrene] investigated as solid-phase extraction (SPE) sorbents to extract six compounds (nitrobenzene, 2-naphthol, benzene, n-butyl p-hydroxybenzoate, naphthalene, p-dichlorobenzene) in environmental water by high-performance liquid chromatography. Parameters affecting extraction efficiency were investigated in detail to explore the extraction mechanism of the nanofibers. Under optimized conditions, six compounds followed an excellent linear relationship in the range 10–5,000 ng mL−1 with coefficients of determination (r 2) greater than 0.99. The repeatability (expressed as relative standard deviations) was from 3.0 to 7.0%, corresponding to 2.0 mL of water samples at 25 and 500 ng mL−1 spiked levels for the six compounds. The limits of detection varied from 0.01 to 0.15 ng mL−1 (signal-to-noise ratio of3). A comparison of the SPE using nanofibers as sorbents and the most commonly used octadecylsilica SPE cartridges was carried out in terms of absolute recovery, sensitivity, and reproducibility for the compounds investigated. Finally, the method was applied to four real water samples. The results highlighted the importance of functional groups, and the polarity of nanofibers in controlling sorption of target compounds, and clearly showed that the new method could be a viable and environmentally friendly technique for analyzing pollutants in environmental samples.  相似文献   

8.
Summary A rapid, simple, accurate and sensitive liquid chromatographic assay with on-line solid-phase extraction is described for determination of trovafloxacin in human serum. Samples were deproteinized with acetonitrile and injected on to an NH2 extraction column for sample clean-up. Thereafter, an on-line column-switching system was used for quantitative transfer of the drug to a C18 analytical column. Separation was performed by ion-pair chromatography and detection was by ultraviolet absorbance at 275 nm. Recovery was 98.5%. The linear range was from 0.25 to 20μg mL−1, with a correlation coefficient of 0.999. Detection limit was 0.1 μg mL−1 from extraction of 25 μL serum.  相似文献   

9.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

10.
Summary The eleven Environmental Protection Agency (EPA) priority phenolic compounds have been determined by solid-phase extraction (SPE) coupled on-line to supercritical-fluid chromatography (SFC) with diodearray detection. The variables affecting chromatographic separation were optimized and the analytes were separated at 40 °C in two diol columns connected in series; a gradient of methanol, as modifier, and CO2 was used as mobile phase. Under these conditions, all the compounds studied were separated to baseline in less than 13 min. PLRP-S and LiChrolut EN were tested as sorbents in a 10×3 mm i.d. laboratory-packed precolumn for solid-phase extraction. An ion-pair reagent, tetrabutylammonium bromide (TBA), was used in the extraction process to increase break-through volumes. The performance of the method was checked with tap and river waters and the pre-concentration of 20 mL of sample in a PLRP-S pre-column enabled phenolic compounds to be determined at low μg L−1 levels with limits of detection ranging between 0.4 and 2 μg L−1. The repeatability and reproducibility between days (n=3) for real samples spiked at 10 μg L−1 were lower than 10%.  相似文献   

11.
The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10–C13 LAS homologues were found to be 30, 53, 50, and 43 μg g−1, respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027 ng mL−1 of LAS with a linear calibration range from 0.2 to 100 ng mL−1, showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents.  相似文献   

12.
A broad range of organic compounds is recognized as environmentally relevant for their potential adverse effects on human and ecosystem health. This method was developed to better determine the distribution of 61 compounds that are typically associated with industrial and household waste as well as some that are toxic and known (or suspected) for endocrine-disrupting potential extracted from environmental sediment samples. Pressurized liquid extraction (PLE) coupled with solid-phase extraction (SPE) was used to reduce sample preparation time, reduce solvent consumption to one-fifth of that required using dichloromethane-based Soxhlet extraction, and to minimize background interferences for full scan GC/MS analysis. Recoveries from spiked Ottawa sand, commercially available topsoil, and environmental stream sediment, fortified at 4-720 μg per compound, averaged 76 ± 13%. Initial method detection limits for single-component compounds ranged from 12.5 to 520 μg/kg, based on 25 g samples. Results from 103 environmental sediment samples show that 36 out of 61 compounds (59%) were detected in at least one sample with concentrations ranging from 20 to 100,000 μg/kg. The most frequently detected compound, beta-sitosterol, a plant sterol, was detected in 87 of the 103 (84.5%) environmental samples with a concentration range 360-100,000 μg/kg. Results for a standard reference material using dichloromethane Soxhlet-based extraction are also compared.  相似文献   

13.
An automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) system was developed for the determination of macrolide antibiotics including erythromycin (ETM), roxithromycin (RTM), tylosin (TLS) and tilmicosin (TMC) in environmental water samples. A Capcell Pak MF Ph-1 column packed with restricted access material (RAM) was used as SPE column for the concentration of the analytes and clean-up of the sample. One milliliter water sample was injected into the conditioned SPE column and the matrix was washed out with 3 mL high purity water. By rotation of the switching valve, macrolides (MLs) were eluted in the back-flush mode and transferred to the analytical column by the chromatographic mobile phase. The matrix effect was evaluated by the directly injection LC-MS and on-line SPE-LC-MS methods. The limits of detection (LODs) and limits of quantification (LOQs) obtained are in the range of 2-6 and 7-20 ng L−1, respectively, which means that the proposed method is suitable for trace analysis of MLs at low level concentration. The intra- and inter-day precisions are in the range of 2.9-7.2% and 3.3-8.9%, respectively. In the three fortified levels (20, 200 and 2000 ng L−1), recoveries of MLs ranging from 86.5% to 98.3% are obtained.  相似文献   

14.
Anion-exchange solid-phase extraction accompanied with high-performance liquid chromatography has been developed for the determination of six kinds of aminopolycarboxylic acids (APCAs) in river water [N-(2-hydroxyethyl)ethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,3-propanediaminetetraacetate (PDTA), diethylenetriaminepentaacetate (DTPA), 1,2-propanediaminetetraacetate (MeEDTA), and O,O′-bis(2-aminoethyl)ethyleneglycoltetraacetate (GEDTA)]. The enrichment of APCAs using an anion-exchange cartridge was successfully done by the removal of anions, which competed with APCAs in anion-exchange processes. Barium chloride solution was added to river water and the mixture was passed through On Guard II Ag and H cartridges and then a Bond Elut Jr.SAX cartridge to enrich APCAs. After elution, APCAs were analyzed on two reversed phase C30 columns connected in series and detected with ultraviolet detection. The enrichment using solid-phase extraction permitted the determination of APCAs in river water at concentrations as low as 1 nM. Good recoveries (83–111%) were obtained for each APCA by the standard addition method on three river water samples with high accuracy (RSD 1.8–9.5%). Applying this method, two kinds of APCAs, EDTA and DTPA, were determined in samples from the Oyabe and Senbo Rivers in Japan.  相似文献   

15.
Lubov Oliferova  Yury Zolotov 《Talanta》2007,72(4):1386-1391
Naphthalene, biphenyl, acenaphtene, anthracene and pyrene were extracted from water samples using inner walls of polytetrafluoroethylene capillary. Optimum conditions for sorption, desorption and heart-cutting of the analyte zone were found. Combined on-line solid-phase extraction and HPLC method for determination of these compounds was proposed. Limits of detection were: (μg L−1): 0.4 (naphthalene), 0.3 (biphenyl), 0.6 (acenaphtene), 0.2 (anthracene) and 0.1 (pyrene).  相似文献   

16.
Zhou YY  Wang SW  Kim KN  Li JH  Yan XP 《Talanta》2006,69(4):970-975
Dichlorodiphenyltrichloroethane (DDT) and its metabolites are a typical kind of persistent organic pollutants (POPs). Development of a simple, cost-effective and sensitive methodology to monitor DDTs concentrations in water environment is of particular significance for understanding the fate and behavior of these pollutants. In this paper, a method on the basis of solid-phase extraction (SPE) using expanded graphite (EG) as sorbent coupled on-line with high performance liquid chromatography (HPLC) was developed for the determination of trace levels of p,p′-DDD (2,2-bis(4-chlorophenyl)-1,1-dichloroethane), p,p′-DDT, o,p′-DDT and p,p′-DDE (2,2-bis(4-chlorophenyl)-1,1-dichloroethene) in water. The analytes in water were preconcentrated onto the SPE column packed with expanded graphite, and subsequently eluted with methanol-water (90:10) mixed solvent. HPLC with a photodiode array detector was used for their separation and detection. The developed on-line solid-phase extraction protocol for HPLC permits the current HPLC separation and the next preconcentration proceeded in parallel, and thus allows one determination within 8 min. The precision (R.S.D.) for 10 replicate injections of a mixture of 1 μg l−1 of each analyte was 3.2-6.2% for the peak area measurement. The detection limits (S/N = 3) for preconcentrating 50 ml of sample solution ranged from 10 to 25 ng l−1 at a sample throughput of 7.5 samples h−1. The enhancement factors were about 700. The method was applied to the determination of trace p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE in local lake, river and tap water samples.  相似文献   

17.
A highly selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for on-line solid-phase extraction-HPLC determination of trace pentachlorophenol (PCP) in water samples. The PCP-imprinted amino-functionalized silica sorbent was characterized by FT-IR, SEM, nitrogen adsorption and the static adsorption experiments. The imprinted functionalized silica gel sorbent exhibited high selectivity and offered a fast kinetics for the adsorption and desorption of PCP. The prepared sorbent was shown to be promising for on-line solid-phase extraction for HPLC determination of trace levels of PCP in environmental samples. With a sample loading flow rate of 5 ml min(-1) for 2 min, an enhancement factor of 670 and a detection limit (S/N = 3) of 6 ng l(-1) were achieved at a sample throughput of five samples h(-1). The precision (RSD) for nine replicate on-line sorbent extractions of 10 microgl(-1) PCP was 3.8%. The sorbent also offered good linearity (r = 0.9997) for on-line solid-phase extraction of trace levels of PCP. The method was applied to the determination of PCP in local lake water, river water and wastewater samples.  相似文献   

18.
A procedure based on solid-phase extraction (SPE) followed by high-performance liquid chromatography (HPLC) with diode array detection has been developed for the simultaneous analysis of 16 widely used pesticides in groundwater samples. The compounds analysed were: aldicarb, atrazine, desethylatrazine, desysopropylatrazine, carbofuran, 2,4-D, dicloran, fenitrothion, iprodione, linuron, metalaxyl, metazachlor, phenmedipham, procymidone, simazine and vinclozolin. Five different SPE sorbents, C18 bonded silica (Isolute SPE C18 (EC)), graphitised carbon black (Superclean Envi-Carb), highly cross-linked polystyrene-divinylbenzene (Lichrolut EN), divinylbenzene-N-vinylpyrrolidone (Oasis HLB) and surface modified styrene-divinylbenzene (Strata X), were compared. HPLC separation and quantification of the selected pesticides was carried out under isocratic conditions by means of a new reversed-phase column (Gemini from Phenomenex) based on C18 bonded to organic-silica particles. Oasis HLB and Strata X provided the best results in the preconcentration of 1-l samples, yielding average recoveries higher than 70%, except for phenmedipham that rapidly degrades in groundwater. Detection limits of the target pesticides provided by the proposed SPE-HPLC procedure were between 0.003 and 0.04 μg l−1.  相似文献   

19.
Summary Momordicoside A has been determined by solid-phase extraction (SPE) on a Envi Carb cartridge (3 mL, 250mg) then high-performance liquid chromatography (HPLC) on a C18 column (4.6 mm×250 mm, 5 μm particle) with acetonitrile-methanol-50mm potassium dihydrogen phosphate buffer, 25:20:60 (v/v), as mobile phase, at a flow rate of 0.8 mL min−1, and UV detection at 208 nm. The analytical method was shown to be highly reproducible, with precision (asRSD) and accuracy (asRME)<10%, both intra-day and inter-day. Absolute recoveries were >90%. The method was applied to the determination of momordicoside A in various tissues from different varieties of bitter melon from different producing areas.  相似文献   

20.
Estrone is one of the important potential endocrine-disrupting compounds, and the sensitive and reliable analytical methods for the determination of estrone are required for the assurance of human health. In this paper, using estrone as template molecule, 3-aminopropyltriethoxysilane as function monomer, and tetraethoxysilicane as cross-linker, a highly selective molecularly imprinted microsphere was synthesized by surface molecular imprinting technique combined with a sol–gel process. The imprinted material was characterized by the Fourier transform infrared and static adsorption experiments, and the results showed that it exhibited good recognition and selective ability for estrone. A novel method for separation and determination of trace estrone in environmental sample was developed using on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography. With a sample loading flow rate of 2.6 mL min−1 for a 9.6-min extraction, the enrichment factor obtained by the slopes of the linear portion in comparison with the direct injection of 10 μL standard sample solution was 1,045. The detection limit (S/N = 3) was 5.7 ng L−1, and the relative standard deviations for nine replicate extractions of 5.0 μg L−1 estrone was less than 10.0%. This method was evaluated for quantitative determination of estrone in well and lake water samples spiked at two levels (0.5 and 1.0 μg L−1) with recoveries ranging from 86% to 95%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号