首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Dai XX  Li YF  He W  Long YF  Huang CZ 《Talanta》2006,70(3):578-583
A dual-wavelength resonance lighting scattering (DW-RLS) ratiometry is developed to detect anion biopolymer based on their bindings with cation surfactant. Using the interaction of Hyamine 1622 (HM) with fish sperm DNA (fsDNA) as an example, a dual-wavelength resonance light scattering (DW-RLS) ratiometric method of DNA was constructed. In Britton-Robinson buffer controlled medium, fish sperm DNA (fsDNA) could interact with Hyamine 1622 (HM), displaying significantly enhanced RLS signals. By measuring the RLS signals characterized at 300.0 nm (I300.0) and the RLS intensity ratio (I276.0/I294.0), respectively, fsDNA over a wide dynamic range of content could be detected. Typically, when HM concentration is kept at 6.0 × 10−5 mol l−1, using I300.0 could detect fsDNA over the range of 50-2000 ng ml−1 with the limit of 3.0 ng ml−1, while using I276.0/I294.0 could detect fsDNA over the range of 0.5-2500 ng ml−1 with the limit of 0.05 ng ml−1. Thus the latter so-called DW-RLS ratiometry is obviously superior to the former one. Based on the measurements of I300.0 and I276.0/I294.0 data, a Scatchard plot concerning the interaction between HM and fsDNA could be constructed and thus the binding number (n) and binding constant (K) could be available with the values of 13.5 and 1.35 × 105 mol−1 l, and 11.9 and 1.65 × 105 mol−1 l, respectively.  相似文献   

2.
This paper presents two easy and selective methods for determining the active principles nafronyl (NFL) and naproxen (NAP), using a flow-through fluorescence optosensor based on the on-line immobilization on a nonionic-exchanger (Silica Gel, Davisil™ and Amberlite XAD 7, respectively) solid support. The determination was performed in 5×10−3 M HAc/NaAc buffer solution at pH 5 for NFL and 15×10−3 M glycine/HCl buffer solution at pH 2.5 for NAP at a working temperature of 20 °C. The fluorescence intensities were measured at λex/em=294/336 nm and λex/em=332/354 nm for NFL and NAP, respectively. The response time for these optosensors were practically instant, obtaining a linear concentration range between 0 and 700.0 ng ml−1 with a detection limit of 20.8 ng ml−1, an analytical sensitivity of 10.1 ng ml−1 and a standard deviation of 1.27% at a 500 ng ml−1 concentration level for NFL and a linear concentration range between 0 and 200.0 ng ml−1 with the detection limit of 13.3 ng ml−1, an analytical sensitivity of 6.0 ng ml−1 and a standard deviation of 3.52% at a 100 ng ml−1 concentration level for NAP. The proposed methods were satisfactorily applied to real samples (three commercial formulations and urine samples). The effects of the possible interferences were evaluated in all cases.  相似文献   

3.
Luminescent silicon dioxide nano-particles with size of 20 nm, which containing dibromofluorescein (D) were synthesized by sol-gel method (symbolized by D-SiO2).The particles can emit intense and stable room temperature phosphorescence signal on polyamide membrane when Pb(Ac)2 was used as a heavy atom perturber. The λexmax/λemmax was 457/622 nm. Our research indicated that the specific immune reaction between goat-anti-human IgG antibody labeled with D-SiO2 and human IgG could be carried out on polyamide membrane quantitatively, and the phosphorescence intensity of the particle was enhanced after the immunoreactions. Thus a new method of solid substrate room temperature phosphorescence immunoassay (SS-RTP-IA) for the determination of human IgG was established basing on antibody labeled with the D-SiO2 nanoparticles. The linear range of this method was 0.0624-20.0 pg human IgG spot−1 (corresponding concentration: 0.156-50.0 ng ml−1, the sample volume: 0.40 μl spot−1) with a limit of detection (LD) as 0.018 pg spot−1, and the regression equation of working curve was ΔIp = 7.201 mIgG (pg spot−1) + 82.57. Samples containing 0.156 and 50.0 ng ml−1 of IgG were measured repeatedly for 11 times and R.S.D.s were 4.1 and 3.4%, respectively. Results showed that this method had the merits as sensitive, accurate and precise.  相似文献   

4.
Based on direct hapten coated format a competitive indirect enzyme-linked immunosorbent assay (ciELISA) for bisphenol A (BPA) was developed. Polystyrene surface was modified by 3-Aminopropyltriethoxysilane (APTES) to produce amino groups after H2SO4/HNO3-pre-treatment. 4,4-bis (4-hydroxyphenyl) valeric acid (BVA) which is analogue of BPA, was successfully immobilized on the surface of microtiter plates by N,N′-dicyclohexylcarbodiimide (DCC) method. The essential steps of the assay were optimized, especially blocking procedure which is key step to prevent unspecific binding of antibody. The results indicated that compared with hapten-protein coated format (IC50 = 176.67 ng ml−1, LOD = 15.90 ng ml−1), the direct hapten coated format (IC50 = 23.50 ng ml−1, LOD = 0.27 ng ml−1) could improve assay sensitivity and the detection ranges were 2.30 ng∼157.60 ng ml−1 with good signal reproducibility (P value > 0.05) after careful optimization of assay conditions. Tap water samples and seawater samples were spiked with a known amount of BPA and measured by ciELISA. The average recoveries were between 70 and 142%. As far as we are aware this is the most sensitive ELISA for BPA yet reported.  相似文献   

5.
The electrochemical behavior of terazosin at the hanging mercury drop electrode was studied in Britton-Robinson buffer (pH 2-11), acetate buffer (4.5-5.5), and in 0.1 M solution of each of sodium sulfate, sodium nitrate, sodium perchlorate and potassium chloride as supporting electrolytes. The square-wave adsorptive cathodic stripping voltammogram of terazosin exhibited a single well-defined two-electron irreversible cathodic peak which may be attributed to the reduction of CO double bond of the drug molecule. A fully validated, simple, high sensitive, precise and inexpensive square-wave adsorptive cathodic stripping voltammetric procedure was described for determination of terazosin in bulk form, tablets and human serum. A mean recovery for 1×10−8 M terazosin in bulk form, following preconcentration onto the hanging mercury drop electrode for 60 s at a −1.0 V (versus Ag/AgCl/KCls), of 99±0.7% (n=5) was obtained. Limits of detection (LOD) and quantitation (LOQ) of 1.5×10−11 and 5×10−11 M bulk terazosin were achieved, respectively. The proposed procedure was successfully applied to determination of the drug in its Itrin® tablets and human serum samples. The achieved LOD and LOQ of the drug in human serum samples were 5.3×10−11 and 1.8×10−10 M THD, respectively. The pharmacokinetic parameters of the drug in human plasma were estimated as: Cmax=77.5 ng ml−1, tmax=1.75 h, AUC0-t=602.3 ng h ml−1, Ke=0.088 h−1 and t1/2=11.32 h) which are favorably compared with those reported in literature.  相似文献   

6.
A backscattering light (BSL) detection assembly is constructed and applied to the determination of nucleic acids with high sensitivity and selectivity based on the measurements of BSL signals at water/tetrachloromethane (H2O/CCl4) interface. In aqueous medium of pH 3, the binary complex of of Al(III)-DNAs could be formed by the interaction of Al(III) with the phosphate group of DNAs, which then could interact with tetraphenylporphyrin (TPP) in tetrachloromethane through liquid/liquid interaction, forming a ternary complex of TPP-Al(III)-DNAs at the interface. It was observed that greatly enhanced BSL signals occurred with maximum peak at 469 nm when the ternary complex of TPP-Al(III)-DNAs were absorbed to the liquid/liquid interface. The enhanced backscattering light intensity (IBSL) is in proportion to the concentration of calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) in the range of 0.6-1200 ng ml−1 and 1.1-1200 ng ml−1, respectively. The limits of determination (3σ) are 60 pg ml−1 and 110 pg ml−1, correspondingly. Artificial samples with highly interference backgrounds were determined with the recovery ranging from 94.5 to 106.7%, and relative standard deviation (R.S.D.) less than 2.40%.  相似文献   

7.
Fenitrooxon [O,O-dimethyl-O-(4-nitro-m-tolyl)phosphate] is the major metabolite of the organophosphorus insecticide fenitrothion, and 3-methyl-4-nitrophenol is its major degradation product. In the present study, we describe the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of these compounds in water samples based on a group-specific polyclonal antiserum generated with a “bifunctional hapten”, which has two functions: the conventional function of producing an antibody against an antigen and a unique function of promoting the production of the antibodies in rabbit. For application to water samples, the influence of several factors such as organic solvent, pH, and detergent was studied. Under optimized conditions, the quantitative working range of the fenitrooxon ELISA was 0.71-27 ng ml−1 with a limit of detection (LOD) of 0.32 ng ml−1, and the fenitrooxon concentration giving 50% reduction of the maximum signal (IC50) was 4.2 ng ml−1. The quantitative working range of the 3-methyl-4-nitrophenol ELISA was 0.67-27 ng ml−1 with a LOD of 0.38 ng ml−1 and an IC50 of 3.7 ng ml−1. No significant matrix effect originating from the water sample (river water, tap water, purified water, and bottled water) was shown by addition of Tween 20 to the assay buffer. Water samples spiked with each of these compounds at 1, 5, 10, and 20 ng ml−1 were directly analyzed without extraction and clean-up by the proposed ELISA. The mean recovery was 100.9%, and the mean coefficient of variation (CV) was 7.7% for the fenitrooxon ELISA and for the 3-methyl-4-nitrophenol ELISA, the mean recovery was 97.6%, and the mean CV was 7.2%. The proposed ELISA allows precise and accurate determination of these compounds in water at such low levels.  相似文献   

8.
A direct method for the simultaneous determination of naproxen and salicylate in human serum is reported, based on a combination of spectrofluorometric measurements with two multivariate calibration techniques: partial least-squares (PLS-1) and the novel net analyte preprocessing (NAP). The method is rapid, selective and sensitive, and is based on the measurement of the fluorescence spectra of NH3 alkalinized whole human sera at the excitation wavelength of 315 nm. It can be applied within the ranges of concentrations 50-200 ng ml−1 for naproxen and 100-300 ng ml−1 for salicylate. The employed chemometric techniques have been compared on the basis of the statistical indicators for calibration and validation. Reproducibility and interference studies in abnormal sera have also been carried out.  相似文献   

9.
Yoon KH  Lee SY  Jang M  Ko SH  Kim W  Park JS  Park I  Kim HJ 《Talanta》2005,66(4):831-836
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for determination of propiverine and propiverine N-oxide metabolite in human plasma using oxybutynin as internal standard. Instead of extracting propiverine from plasma using organic solvents, which should be separated from the aqueous phase and evaporated before injecting the sample into the chromatograph, plasma sample containing propiverine and N-oxide was directly injected after precipitating proteins with acetonitrile. Numerous compounds in the plasma did not interfere with the highly specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted propiverine, N-oxide and oxybutynin within 2 min (0.1% formic acid in water/acetonitrile, 25:75, v/v). The LC-MS/MS method and an alternative LC-MS method, using methyl-t-butyl ether extraction and selected ion monitoring, were validated over 1-250 ng ml−1 of propiverine and 2 to 500 ng ml−1 of N-oxide, and successfully applied in a pharmacokinetic study. The lower limit of quantitation was 1 ng ml−1 for propiverine and 2 ng ml−1 for N-oxide in both methods.  相似文献   

10.
The inhibitory effects of five hydroxyanthraquinones (HAQs) from root and rhizoma of Rheum officinale Baill, a traditional Chinese medicinal (TCM) herb, on Staphylococcus aureus growth were investigated by calorimetry. The power-time curves of S.aureus with and without HAQ were acquired and the extent and duration of inhibitory effects on the metabolism evaluated by growth rate constants (k1, k2), half inhibitory ratio (IC50), maximum heat output (Pmax) and peak time (tp). The value of k1 and k2 of S. aureus in the presence of the five HAQs decreased with the increasing concentrations of HAQs. Moreover, Pmax was reduced and the value of tp increased with increasing concentrations of the five drugs. The inhibitory activity varied for different drugs. IC50 of the five HAQs was 4 μg ml−1 for emodin, 3.5 μg ml−1 for rhein, 10 μg ml−1 for aloe-emodin, 1000 μg ml−1 for chrysophanol, 1600 μg ml−1 for physcion. The sequence of antimicrobial activity of the five HAQs: rhein > emodin > aloe-emodin > chrysophanol > physicion.  相似文献   

11.
A sensitive and selective phosphorimetric method for the determination of 1-naphthaleneacetic acid (1-NAA) based on a flow-injection system connected to a flow cell packed with a solid support and placed in the sample compartment of a conventional luminescence spectrometer is described. A non-ionic solid polymeric resin Amberlite XAD-7 is used for the packing. After injection of the sample, 1-NAA is on-line retained in the packed resin and measurements of the heavy atom induced (HAI)-room temperature phosphorescence (RTP) emission (λex/λem = 292/490 nm) from this native luminescent compound are taken.The optimum experimental conditions were investigated by injecting 2 ml samples of an aqueous solution of 1-NAA in the flow system. A concentration 0.15 mol l−1 of thallium(I) ions, as heavy atom, both in the samples and the carrier flow, was finally selected. Also, a concentration of 6 mmol l−1 of sulphite was optimal for ensuring the necessary deoxygenation of the system at the selected flow rate of 0.8 ml min−1. After measurement, the solid support was efficiently regenerated by injecting 1 ml of a mixture water:acetone in a ratio 1:1 (v/v) into the flow.The detection limit (3σ criterion) was 1.2 ng ml−1 of 1-NAA. The repeatability (R.S.D.) for five replicates of a sample containing 50 ng ml−1 of analyte turned out to be ±3% and the calibration graphs proved to be linear up to 500 ng ml−1 of 1-NAA (maximum concentration assayed). The effect of potential interferences from other organic species which can be also used as plant growth regulators, as well as from various inorganic cations and anions, has been investigated as well.The method was successfully applied to the determination of low levels of this plant growth regulator in natural waters (river and fountain waters) and apples.  相似文献   

12.
A simple and sensitive kinetic method for the determination of traces of mercury (70-760 ng ml−1) based on its inhibitory effect on the addition reaction between methyl green and sulfite ion is proposed. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl green at 596 nm between 2 and 4 min using a fixed time method. Artificial neural networks with back propagation algorithm coupled with an orthogonal array design were applied to the modeling of the proposed kinetic system and optimization of experimental conditions. An orthogonal design was utilized to design the experimental protocol, in which pH, concentration of sulfite, temperature, and concentration of methyl green were varied simultaneously. Optimum experimental conditions in term of sensitivity were generated by using ANNs. The rate of decrease in absorbance is inversely proportional to the concentration of Hg(II) over entire concentration range tested (100-550 ng ml−1) with a detection limit of 45 ng ml−1 and a relative standard deviation at 200-400 ng ml−1 Hg(II) of 3.2% (n=5). A simple preconcentration step improved the limit of detection and linear dynamic range of the method to about 8 and 12-760 ng ml−1, respectively, by about 10 times enrichment of mercury between 12 and 75 ng ml−1. The method was based on enrichment of Hg(II) from dilute samples on an anionic ion exchanger fixed on a plastic strip and was applied to the determination of Hg(II) in environmental samples with satisfactory results.  相似文献   

13.
A highly sensitive and relatively interference-free spectrophotometric method for determination of calcium is described. The method is based on the reaction between calcium ions and carboxyazo-p-CH3 in aqueous citrate medium of pH 7, to form a blue complex with maximum absorption at 716 nm. The calibration is linear up to 0.12 μg ml−1 calcium with a repeatability (R.S.D.) of 1.0% at a concentration of 0.04 μg ml−1 (n=5). The molar absorptivity of the complex and Sandell’s sensitivity are 3.5×105 l mol−1 cm−1 and 0.11 ng cm−2, its 10σ limit of quantification and the 3σ limit of detection were found to be 0.3 ng ml−1 and 0.09 ng ml−1 respectively. The influence of reaction variables and the effect of interfering ions are studied; no interference was observed in clinical samples. The proposed method has been applied directly to the determination of calcium in clinical samples without the need for pre-concentration, masking metal ions and digesting samples.  相似文献   

14.
An electrochemiluminescence (ECL)-based method for rapid and sensitive detection of acridinium ester in neutral solution was described. Strong ECL emission was observed when a positive voltage over 2.0 V (versus Ag/AgCl) was applied to the working electrode (Pt) immersed in the acridinium ester solution of 2.0 mol l−1 KNO3 (pH 7.0). The possible ECL mechanism was discussed. It was proposed that the ECL emission came out of N-methylacridone, the oxidization product of acridinium ester by the nascent oxygen generated on the surface of working electrode in the course of oxidization of water. Other influenced factors including the electrochemical parameters, the ECL reaction medium and pH value, were investigated in detail. Under the optimal conditions, ECL intensity has a linear relationship with the concentration of acridinium ester in the range of 0.24-96 ng ml−1 (r=0.9999). The relative standard deviation for 24 ng ml−1 acridinium ester was 4.6% (n=11). The limit of detection was 0.16 ng ml−1.  相似文献   

15.
A simple and highly selective flow injection (FI) on-line preconcentration and separation flame atomic absorption spectrometric (FAAS) method was developed for the determinations of trace amounts of silver, gold and palladium. The selective preconcentration of the noble metals was achieved in a wide range of sample acidity (0.1-6 M HNO3 or HCl) on a microcolumn packed with amidinothioureido-silica gel (ATuSG). The analytes retained on the column were effectively eluted with 5.0% thiourea solution. The analytical procedure was optimized for sample acidity, elution, interferences, flow rate of sampling and eluting, and concentration of sample. Common co-existing cations and anions did not interfere with the preconcentration and determination of the three metals. At a sample loading flow rate of 4.5 ml min−1 with 60 s preconcentration, detection limits (3σ) of 1.1 ng ml−1 Ag, 13 ng ml−1 Au and 17 ng ml−1 Pd were obtained. The precisions (R.S.D., n=11) were 1.2% for Ag, 1.2% for Au and 1.7% for Pd, respectively. The detection limits can be further improved by increasing sample volume. The analytical results obtained by the proposed method for a number of standard reference materials were in good agreement with the certified values.  相似文献   

16.
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphorothioyloxy)benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a heterologous coating antigen, 4-(3-(diethoxyphosphorothioyloxy)phenylamino)-4-oxobutanoic acid. The 50% inhibition value (IC50) was 348 ng mL−1 for parathion, 13 ng mL−1 for coumaphos, 22 ng mL−1 for quinalphos, 35 ng mL−1 for triazophos, 751 ng mL−1 for phorate, 850 ng mL−1 for dichlofenthion, and 1301 ng mL−1 for phoxim. The limit of detection (LOD) met the ideal detection criteria of all the seven OP residues. A quantitative structure-activity relationship (QSAR) model was constructed to study the mechanism of antibody recognition using multiple linear regression analysis. The results indicated that the frontier-orbital energies (energy of the highest occupied molecular orbital, EHOMO, and energy of the lowest unoccupied molecular orbital, ELUMO) and hydrophobicity (log of the octanol/water partition coefficient, log P) were mainly responsible for the antibody recognition. The linear equation was log(IC50) = −63.274EHOMO + 15.985ELUMO + 0.556 log P − 25.015, with a determination coefficient (r2) of 0.908.  相似文献   

17.
A sensitive and simple solid-phase preconcentration procedure for enrichment of cadmium prior to analysis by flame atomic absorption spectrometry (FAAS) is described. The method is based on the adsorption of cadmium as CdI42− on naphthalene-methyltrioctylammonium chloride adsorbent, elution by nitric acid and subsequent determination by FAAS. The effect of pH, iodide concentration, sample flow rate, volume of the sample and diverse ions on the recovery of the analyte was investigated and optimum conditions were established. A preconcentration factor of 40 was achieved using the optimum conditions. The calibration graph was linear in the range 1-100 ng ml−1 cadmium in the initial solution. The detection limit based on the 3Sb criterion was 0.6 ng ml−1 and the relative standard deviations (RSD) were 3.9 and 1.05% for 5 and 40 ng ml−1, respectively (n=8). The method was successfully applied to the determination of cadmium added to river, tap and Persian Gulf water samples.  相似文献   

18.
In pH 6.0-11.2 Britton-Robinson buffer solution, binding of heparin with crystal violet (CV) can result in a significant enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering, such as frequency doubling scattering (FDS) and second-order scattering (SOS). Their maximum scattering wavelengths, λex/λem, appear at 492 nm/492 nm for RRS, 984 nm/492 nm for FDS and 492 nm/984 nm for SOS, respectively. The optimum conditions of the reaction, the influencing factors and the relationship between the three scattering intensities and the concentration of heparin have been investigated. New methods for the determination of trace amounts of heparin based on the RRS, FDS and SOS methods have been developed. The methods exhibit high sensitivities, the detection limit for heparin is 2.9 ng ml−1 for the RRS method, 3.5 ng ml−1 for the FDS method and 3.3 ng ml−1 for the SOS method. The methods have good selectivity and were applied to the determination of heparin in heparin sodium injection samples with satisfactory results.  相似文献   

19.
A procedure for the determination of Imidacloprid and its main metabolites was set up by means of liquid chromatography with an electrochemical detector and post-column photochemical reactor (LC--ED). Sample clean-up was developed for bees, filter paper and maize leaves. Chromatographic conditions were based on a reversed-phase C-18 column operated by phosphate buffer 50 mM/CH3CN (80/20, v/v) at pH 2.9. Detection of Imidacloprid and its metabolites was performed at a potential of 800 mV after photoactivation at 254 nm. Compared to conventional techniques such as gas chromatography/mass spectrometry (GC/MS) or LC coupled to other detectors, the present method allows simultaneous trace-level determination of both Imidacloprid (0.6 ng ml−1) and its main metabolites (2.4 ng ml−1).  相似文献   

20.
Yongqiang Cheng  Yuqin Su 《Talanta》2007,71(4):1757-1761
A novel assay of DNA has been proposed by using ferric nanoparticles as probes coupled with resonance light scattering (RLS) detection. At pH 7.40, the RLS intensity of ferric nanoparticles can be greatly enhanced by the aggregation of positively charged ferric nanoparticles through electrostatic interaction with negatively charged DNA. The enhanced intensity of RLS at 452 nm is proportional to the concentration of DNA in the range of 0.01-0.8 μg ml−1 for calf thymus and salmon sperm DNA and in the range of 0.005-0.3 μg ml−1 for E. coli K12 genomic DNA. Detection limits are 3.6 ng ml−1 for calf thymus DNA, 4.4 ng ml−1 for salmon sperm DNA, and 1.9 ng ml−1 for E. coli K12 genomic DNA, respectively. Compared with the chromophores previously used in RLS assay, the ferric nanoparticles have offered several advantages in easy preparation, good photostability and high sensitivity without being modified or functionalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号