首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 μL of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4′-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study.TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4′-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 μg mL−1 with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time.Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS).TDA was observed to be unstable in extracts of foam but not in pure solutions.  相似文献   

2.
2,4-Toluene diamine (TDA), a class A carcinogen, is a major raw material for the production of toluene diisocyanate (TDI), which is one of the precursors for the production of polyurethane foams (PU). This review deals with 2,4-toluene diamine's (TDA) carcinogenicity, analytical techniques, biodegradation and use as a biosensor for biogenic and synthetic amines, emphasizing various carcinogenicity studies by 2,4-TDA on animals and humans. This review reports some publications of the analysis of body fluid samples of workers from a PU producing factory for presence of TDA and TDI, since TDI gets absorbed into the worker's body, getting metabolized into TDA. Biodegradations of 2,4-TDA by various researchers are reported and also our own research experience with biodegradation of 2,4-TDA using Aspergillus nidulans isolated from soil site at a polyurethane foam dumping site have been discussed in this review. Biosensors for various biogenic and synthetic amines are discussed.  相似文献   

3.
Occupational exposure to 2,4- and 2,6-toluene diisocyanate (2,4- and 2,6-TDI) was measured during the production of flexible foam. The usefulness of urinalysis of the TDI-derived amines, 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA), for exposure assessment was compared with air monitoring. Urine samples were collected from 17 employees at two plants. The workers' personal exposure was measured using 1-(2-methoxyphenyl)-piperazine (2MP)-impregnated glass fibre filters for sampling and high-performance liquid chromatography (HPLC) with ultraviolet (UV) and electrochemical (EC) detection for quantification. The limit of detection (LOD) of 2,4- and 2,6-TDI was 0.01 microtg ml(-1) for a 20 microl injection. The precision of sample preparation, expressed as the relative standard deviation (RSD), was 0.6% with UV detection and 0.8% with EC detection at a 2,4-TDI concentration of 0.2 microg ml(-1) (n = 6). For 2,6-TDI, the corresponding RSDs were 0.5% and 0.8%. The urinary 2,4- and 2,6-TDA metabolites were determined after acid hydrolysis as heptafluorobutyric anhydride derivatives by gas chromatography-mass spectrometry. The LOD in urine was 0.35 nmol l(-1) for 2,4-TDA and 0.04 nmol l(-1) for 2,6-TDA. The precision (RSD) of six analyses of human urine spiked to a concentration of 100 nmol l(-1) was 3.7% for 2,4-TDA and 3.6% for 2,6-TDA. There was a trend for linear correlation between urinary TDA concentration and the product of airborne TDI concentration and sampling time. Urinalysis of TDA is proposed as a practical method for assessing personal exposures in workers exposed intermittently to TDI.  相似文献   

4.
Summary An ion-pair HPLC method is presented for the determination in plasma of 2,4- and 2,6-toluendiamine (TDA), known carcinogens. The chromatographic conditions consisted in isocratic elution on a reversed phase C18 column with 5 mM octanesulfonic acid in methanol-water, 45∶55, as mobile phase. UV detection was performed at 235 nm. Samples were analyzed after a simple single step liquid-liquid extraction and the method was validated by measurement of precision (interassay and intraassay), sensitivity, specificity, linearity, and recovery. The detection limit for both TDAs in plasma was 20 ng mL−1. The correlation coefficients based on the intrassay calibration curve were 0.998 and 0.997 for 2,6- and 2,4-TDA, respectively. The intraassay accuracy, expressed in terms of recovery, was found to be up to 89.91% and 97.05% for 2,6- and 2,4-TDA, respectively.  相似文献   

5.
Determination of amines in biological samples as markers of exposure to the amines or the corresponding isocyanates is an important tool for industrial exposure assessment. In this study, a liquid chromatography and tandem mass spectrometry (LC-MS/MS) method for determination of amines in biological samples as perfluorofatty amides derivatives is presented. The method enables determination of diamines such as methylene diamine (MDA), toluene diamine (TDA), naphthalene diamine (NDA), hexamethylene diamine (HDA), isophorone diamine (IPDA), methylenedi(cyclohexylamine)(HMDA) and 4,4'-methylene-(2-chloroaniline)(MOCA) in human urine and plasma. The work-up procedure included hydrolysis of the biological samples with 3 M H(2)SO(4) at 100 degrees C for 16 h and extraction of the amines into toluene, where derivatisation of the amines with perfluorofatty acid anhydride was performed. Following removal of excess reagent and the acid formed and an exchange of solvent, the derivatives were analysed using gradient elution with an acetonitrile/water mobile phase composition and electrospray ionisation (ESI) with multiple reaction monitoring (MRM) of [M - H](-)-->[M - H - 120](-) or [119](-). Several perfluorofatty acid anhydrides were evaluated as derivatisation reagents, but the LC chromatographic properties of the pentafluoropropionic acid anhydride (PFPA) derivatives were favourable. Quantification of amine-PFPA derivatives was performed using deuterium labelled amine-PFPA derivatives as internals standards with good precision and linearity in the investigated range of 0-20 ng ml(-1) urine. The instrumental detection limits for the amine-PFPA derivatives were 0.2-3 fmol for MRM of [M - H](-)-->[119](-) and 0.3-8 fmol for [M - H](-)-->[M - H - 120](-). In 10 urine and 6 plasma samples from workers exposed to isocyanates, determination of TDA and MDA as PFPA derivatives was performed using LC-MS/MS and a reference GC-MS method. No significant difference between the two methods was observed.  相似文献   

6.
A method for the determination of isocyanates as di-n-butyl amine (DBA) derivatives using tandem mass spectrometry (MS/MS) and electrospray ionisation (ESI) is presented. Multiple-reaction monitoring (MRM) of the protonated molecular ions and corresponding deuterium-labelled d9-DBA derivatives resulted in selective quantifications with correlation coefficients >0.998 for the DBA derivatives of isocyanic acid (ICA), methyl isocyanate (MIC), ethyl isocyanate (EIC), propyl isocyanate (PIC), phenyl isocyanate (PhI), 1,6-hexamethylene diisocyanate (HDI), 2,4-, 2,6-toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), 4,4′-methylenediphenyl diisocyanate (MDI), 3-ring MDI, 4-ring MDI, HDI-isocyanurate, HDI-diisocyanurate, HDI-biuret and HDI-dibiuret. The instrumental precision for 10 repeated injections of a solution containing 0.1 μg ml−1 of the studied derivatives was <2%. Performing MRM of the product ion [DBA + H]+ (m/z = 130) from the protonated molecular ion resulted in the lowest detection limits, down to 10 amol (for TDI). Quantification of concentrations below 10−6 of the occupational exposure limit (OEL) for TDI during 10 min of air sampling was made possible. In an effort to control the formation of alkali adducts, addition of lithium acetate to the mobile phase and monitoring of lithium adducts was evaluated. Having lithium present in the mobile phase resulted in complete domination of [M + Li]+ adducts, but detection limits for the studied compounds were not improved. Different deuterium-labelled derivatives as internal standards were evaluated. (1) DBA derivatives of deuterium-labelled isocyanates (d4-HDI, d3-2,4-TDI, d3-2,6-TDI and d2-MDI), (2) d9-DBA derivatives of the corresponding isocyanates and (3) d18-DBA derivatives of the corresponding isocyanates. An increase in number of deuterium in the molecule of the internal standard resulted in an increase in instrumental precision and a decrease in correlation within calibration series.  相似文献   

7.
Electrochemical determination of 2,4-D at a mercury electrode   总被引:1,自引:0,他引:1  
An indirect electrochemical determination of 2,4-dichlorophenoxyacetic acid (2,4-D), has been presented. The method is based on the adsorption and desorption of 2,4-D on mercury electrode. Also, the electrochemical behavior of 2,4-D in aqueous solutions at different pH values and different 2,4-D concentrations were studied. A simple and rapid method has been developed for its extraction from water and soil. The subsequent determination was carried out by a tensammetric method. Three calibration curves could be obtained from different parts of voltammogram. Under the optimum conditions (pH = 2.3; Eacc = −1100 mV; tacc = 60 s; alternative current mode; ν = 40 mV s−1; pulse height = 20 mV; modulation frequency = 60 Hz; phase angle = 90°) the limit of detection was 50 μg L−1. The proposed method was applied to the determination of 2,4-D in real samples such as soil and water.  相似文献   

8.
4-Nonylphenol (NP) and octylphenol (OP) were measured by direct ELISA in both laboratory-fortified and surface water samples collected monthly from 10 rivers. In this procedure, samples were concentrated by solid phase extraction (SPE) using Lichrolut RP-18 sorbent with good recoveries obtained for both LC-MS and ELISA, giving a low level of detection (LOD) at the range of low μg L−1 and good reproducibility. Analysis of 40 surface water samples demonstrated that the ELISA may be a useful screening tool for the determination of the alkylphenols in surface water matrices. The concentration of NP and OP in surface waters ranged from 0.11 to 6.58 μg L−1. A good correlation of results obtained by ELISA and LC-MS within the concentration range of 0.08-6.86 μg L−1 was found in the river samples [R2 = 0.924, n = 39]. The influence of various factors on assay determination was also discussed.  相似文献   

9.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

10.
A procedure for the determination of six derivatives of 2-hydroxybenzophenone, used as UV absorbers, in water samples is presented. Compounds were first concentrated using a solid-phase extraction (SPE) cartridge and then selectively determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using electrospray ionization (ESI). The effect of different parameters on the performance of concentration and determination steps is discussed. The highly polar and acidic 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) required the use of ammonium acetate as modifier during desorption of SPE cartridges and also to improve the performance of its separation in the LC column. Under optimized conditions, the proposed method provided limits of quantification from less than 1 to 32 ng L−1, depending on the compound and the type of water sample. Recoveries from the SPE step (83-105%) remained unaffected by the nature of the matrix; however, the efficiency of electrospray ionization was compound and sample dependant. Real sample analysis reflected the presence of three of the six investigated species (BP-4, 2-hydroxy-4-methoxybenzophenone, BP-3, and 2,4-dihydroxybenzophenone, BP-1) in the aquatic environment, particularly in raw wastewater samples. In this latter matrix, BP-4 was the compound presenting the highest concentrations; moreover, it was poorly removed in sewage treatment plants and consequently it also appeared in river water.  相似文献   

11.
Yoon KH  Lee SY  Jang M  Ko SH  Kim W  Park JS  Park I  Kim HJ 《Talanta》2005,66(4):831-836
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for determination of propiverine and propiverine N-oxide metabolite in human plasma using oxybutynin as internal standard. Instead of extracting propiverine from plasma using organic solvents, which should be separated from the aqueous phase and evaporated before injecting the sample into the chromatograph, plasma sample containing propiverine and N-oxide was directly injected after precipitating proteins with acetonitrile. Numerous compounds in the plasma did not interfere with the highly specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted propiverine, N-oxide and oxybutynin within 2 min (0.1% formic acid in water/acetonitrile, 25:75, v/v). The LC-MS/MS method and an alternative LC-MS method, using methyl-t-butyl ether extraction and selected ion monitoring, were validated over 1-250 ng ml−1 of propiverine and 2 to 500 ng ml−1 of N-oxide, and successfully applied in a pharmacokinetic study. The lower limit of quantitation was 1 ng ml−1 for propiverine and 2 ng ml−1 for N-oxide in both methods.  相似文献   

12.
This study presents the development of an automated on-line solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of 23 antibiotics in environmental water samples. After optimisation of LC-MS/MS conditions, SPE parameters such as sorbent type, sample pH or sample volume were optimised. Antibiotic recoveries ranged from 64% to 98% and compared favourably with those achieved using off-line SPE. Limits of detection were in the range 0.5-13.7 ng L−1.This on-line SPE-LC-MS/MS procedure was applied to the analysis of water samples taken in three rivers within the Seine River basin, near Paris (France). The obtained results revealed the occurrence of 12 antibiotics, including tylosin, erythromycin, tetracycline, amoxicillin, trimethoprim, sulfamethoxazole, oxolinic acid, flumequine, norfloxacin, ciprofloxacin, ofloxacin, and vancomycin (2-1435 ng L−1).  相似文献   

13.
Three-phase hollow fiber microextraction technique combined with high performance liquid chromatography-ultra violet (HPLC-UV) was applied for the extraction and determination of gabapentin in biological fluids. Gabapentin (GBP) was derivatized with 1-fluoro-2,4-dinitrobenzene, as a UV absorbent agent in borate buffer (pH 8.2) before extraction. The derivative product of GBP was extracted from the 8.5 mL of acidic solution (source phase) into an organic phase (dihexyl ether) impregnated in the pores of a hollow fiber and finally back-extracted into 24 μL of the basic solution (pH 9.1) located inside the lumen of the hollow fiber (receiving phase). The extraction took place due to pH gradient between the inside and outside of the hollow fiber membrane. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. Under the optimized conditions, preconcentration factor of 95 and detection limit (LOD) of 0.2 μg L−1 were obtained. The calibration graph was linear within the range of 0.6-5000 μg L−1. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of GBP in human urine and plasma samples in the range of microgram per liter and suitable results were obtained (RSDs < 6.3%).  相似文献   

14.
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are the most notable members of an emerging class of persistent organic pollutants (POPs), perfluorochemicals (PFCs). A method for the determination of PFOS and PFOA in water samples was developed and validated in this study. Water samples collected from river and industrial effluent at Guangzhou, one of the most industrialized regions in China, were analyzed by solid-phase extraction (SPE) followed by high-performance liquid chromatography (HPLC) negative electrospray ionization (ESI) mass spectrometry. Operational parameters of the ion trap mass spectrometer were optimized to improve sensitivity and selectivity of this method. The limits of quantitation and recoveries were 2.0 ng L− 1 and 75% for PFOA and 0.50 ng L− 1 and 88% for PFOS, respectively. In river water samples, 2.3-33 ng L− 1 of PFOS and < 2.0-11 ng L− 1 of PFPA were detected. And sewage effluents contained considerably higher concentrations of PFOS and PFOA.  相似文献   

15.
The quantitative analysis of ketones using DNPH is usually conducted in the presence of an acid catalyst. However, this method may cause an analytical error because 2,4-dinitrophenylhydrazones have both E- and Z-stereoisomers. Purified ketone-2,4-dinitrophenylhydrazone comprised only the E-isomer. However, under the addition of acid, both E- and Z-isomers were seen. In the case of 2-butanone-, 2-pentanone- and 2-hexanone-2,4-dinitrophenylhydrazone, the equilibrium Z/E isomer ratios were 0.20, 0.21 and 0.22, respectively. In addition, when trace water was added to the hydrazone derivatives in acetonitrile solution, the concentration of ketone derivatives were seen to decrease and the concentration of free DNPH was seen to increase. The decomposition rate of 2-butanone-2,4-dinitrophenylhydrazone was dependent on the concentration of acid-catalysis and reached an equilibrium state - carbonyl, DNPH, hydrazone-derivative and H2O - within 10 h at 0.1 mol L−1 phosphoric acid solution. The equilibrium constants of ketone-2,4-dinitrophenylhydrazones, [carbonyl] [DNPH]/[hydrazone] [H2O], were relatively large and ranged from 0.74 × 10−4 to 5.9 × 10−4. Hydrazone derivatives formed from 2-ketones such as 2-pentanone, 2-hexanone and 4-methyl-2-pentanone showed lower equilibrium constants than corresponding 3-ketones. Consequently, only a minimum concentration of catalytic acid must be added. The best method for the determination of ketone-2,4-dinitrophenylhydrazones by HPLC or GC is to add phosphoric acid to both the standard reference solution and samples, forming a 0.001 mol L−1 acid solution, and analyze after 27 h.  相似文献   

16.
An analytical method for the determination of amitraz residues in beeswax after hydrolysis to 2,4-dimethylaniline is reported. It consists of wax extraction with an acid buffer solution, head space solid phase microextraction and GC-ITD analysis. The limit of determination is 1 ng g−1. Wax samples from beekepers and commercial foundations were analysed, content of residues varied from <1 to 20.5 ng g−1.  相似文献   

17.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

18.
This paper describes the development and validation of an analytical methodology to determine eight perfluorinated compounds (PFCs) in edible fish using pressurized liquid extraction (PLE) with water and solid-phase extraction (SPE) with an ion-exchanger as extraction and pre-concentration procedures, followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry (LC–QqLIT–MS). The rapidity and effectiveness of the proposed extraction procedure were compared with those most commonly used to isolate PFCs from fish (ion-pairing and alkaline digestion). The average recoveries of the different fish samples, spiked with the eight PFCs at three levels (the LOQ, 10 and 100 μg kg−1 of each PFC), were always higher than 85% with relative standard deviation (RSD) lower than 17%. A good linearity was established for the eight PFCs in the range from 0.003–0.05 to 100 μg kg−1, with r > 0.9994. The limits of quantification (LOQs) were between 0.003 and 0.05 μg kg−1, which are well below those previously reported for this type of samples. Compared with previous methods, sample preparation time and/or LOQs are reduced. The method demonstrated its successful application for the analysis of different parts of several fish species. Most of the samples tested positive, mainly for perfluoropentanoic acid (PFPA), perfluorobutane sulfonate (PFBS) and perfluorooctanoic acid (PFOA) but other of the eight studied PFCs were also present.  相似文献   

19.
Brominated phenols 2- and 4-bromophenol (2-BP and 4-BP); 2,4- and 2,6-dibromophenol (2,4-DBP and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) have been identified as key flavor compounds found in seafoods. Depending on their concentrations, they were responsible for marine or ocean flavor (shrimp/crab/fish/sea salt-like) or for phenolic/iodine/iodoform-like off-flavor. In this work a new analytical methodology was developed to determine, simultaneously, such bromophenols in fish meats, based on reversed-phased high-performance liquid chromatographic separation (RP-HPLC). The separation of bromophenols was made onto a Lichrospher 100 RP-18 column using water:acetonitrile gradient at a flow rate of 1.0 mL min−1, using absorbance detection at 286 nm, were the 2-BP, 4-BP, 2,4- and 2,6-DBP show significant absorbtivity values and at 297 nm for 2,4,6-TBP. They were separated in 20 min with a good chromatographic resolution (Rs) for the isomeric compounds: 2- and 4-BP, Rs = 1.23; 2,4- and 2,6-DBP, Rs = 1.63. The calibration curves were linear in the bromophenols concentration range of 200.0-1000 ng mL−1. Under optimized conditions, the detection limit of the HPLC method was 127 ng mL−1 for 2-BP; 179 ng mL−1 for 4-BP; 89.0 ng mL−1 for 2,4-DBP; 269 ng mL−1 for 2,6-DBP and 232 ng mL−1 for 2,4,6-TBP. This method has been applied in determination of bromophenols, isolated by combined steam distillation-solvent extraction with 2 mL of pentane/diethyl ether (6:4), from Brazilian fishes samples, collected on the Atlantic coast of Bahia (13°01′S and 38°31′W), Brazil. The concentration range determined were 0.20 ng g−1 (2-BP) to 299 ng g−1 (2,4,6-TBP). The method proposed here is rapid and suitable for simultaneous quantification of simple bromophenols in fish meat. As long as we know, it is the first analytical methodology, using RP-HPLC/UV, which was developed to determine simple bromophenols in fish meat.  相似文献   

20.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号