首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained.  相似文献   

2.
A systematic evaluation of different variables affecting the enzymatic hydrolysis of mussel soft tissue by five enzymes, three proteases (pepsin, pancreatin and trypsin), lipase and amylase, has been carried out for the determination of trace elements (As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Enzymatic hydrolysis methods offers advantages such as a less species alteration, safer laboratory conditions and a less contaminant wastes. The enzymatic hydrolysis was performed in an incubation camera Boxcult with orbital and horizontal shaker. Variables affecting the enzymatic hydrolysis process were simultaneously studied by applying a Plackett-Burman design (PBD). For a confidence interval of 95%, the significant factors for all enzymes and for most of the elements were the pH, the incubation temperature and the ionic strength. These significant factors were optimized later by using a central composite design (CCD), which gave optimum conditions at pH of 1, incubation temperature of 37 °C and ionic strength fixed by sodium chloride at 0.2 M when using pepsin. For pancreatin, trypsin, lipase and amylase there were found two different optimum condition sets. The first one involves the use of a 0.5 M phosphate buffer (ionic strength), at a pH of 6 and at an incubation temperature of 37 °C, which allows the quantitative extraction of Al, Cr, Mn, Pb and Zn. The second conditions set employees a 0.1 M phosphate buffer (ionic strength), a pH of 9 and an incubation temperature at 37 °C, and it results adequate to extract As, Cd, Cu, Fe and Ni. Analytical performances, repeatability of the over-all procedure and accuracy, by analyzing DORM-1, DORM-2 and TORT-1 certified reference materials, were finally assessed for each enzyme. Good agreement with certified values has been assessed for most of the elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) when using trypsin, pepsin and/or pancreatin, except for Cd and Pb in DORM-1 and DORM-2 because of the certified contents in such certified reference materials are lower than the limit of detection (0.10 and 0.16 μg g−1 for Cd and Pb, respectively, for the use of trypsin).  相似文献   

3.
This paper reports the development of a new methodology for the determination of cobalt in biological samples by using a flow injection system with loaded DPTH-gel as solid phase to preconcentrate analytes. The procedure is based on the on-line preconcentration of cobalt on a microcolumn of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The trapped cobalt is then eluted with 1% tartaric acid and 1% citric acid (7.1 mL) and determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical figures of merit for the determination of cobalt are as follows: detection limit (3S), 8.5 ng mL–1; precision (RSD), 5.8% for 100 ng mL–1 of cobalt; enrichment factor, 13 (using 7.3 mL of sample); sampling frequency, 40 h–1 using a 60-s preconcentration time. For a 120-s preconcentration time (14.6 mL of sample volume) a detection limit of 5.7 ng mL–1, an RSD under 5% at 50 ng mL–1, an enrichment factor of 25, and a sampling frequency of 24 h–1 were reported. The precision and accuracy of the method were checked by analysis of biological certified reference materials.  相似文献   

4.
A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location — the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na–Ca, Ca–Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as − 30% for conventional measurements in the normal analytical zone, but is reduced to within 5% with this new method. The major currently known limitation is that the accuracy of the method is highly sensitive to fluctuations and noise in the vertical emission-intensity profile, so the stability of the ICP system must be controlled to preferably within 1%.  相似文献   

5.
In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4 mL of a 60:40 methanol-water mixture containing 0.03 mL HNO3. Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 × 10−4 mol L−1 1,8-dihydroxyanthrone, 1.2 × 10−4 mol L−1 CPC, 0.15% (v/v) Triton X-114, 50 °C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ng mL−1 with detection limit of 0.001 ng mL−1 and the precision (R.S.D.%) for five replicate determinations at 18 ng mL−1 of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.  相似文献   

6.
A time-based sequential dispensing on-line column preconcentration procedure for mercury determination at trace levels by cold vapour generation inductively coupled plasma atomic emission spectrometry (CV-ICP-AES), by means of a unified module of a preconcentration column and a gas–liquid separator (PCGLS) is described. The complex of mercury formed on-line with ammonium pyrrolidine dithiocarbamate (APDC) is retained on the surface of the hydrophobic poly(tetrafluoroethylene) (PTFE) turnings, which are packed into the lower compartment of the PCGLS. Subsequently, mercury vapour is generated directly on the PTFE turnings by reductant SnCl2 and separated from the liquid mixture via the PCGLS by argon purge gas. The outlet of the PCGLS is connected directly to the torch adapter of the plasma without the normal spray chamber and nebulizer. With 60-s preconcentration time and 12.0 mL min–1 sample flow rate, the sampling frequency is 30 h–1. The calibration curve is linear over the concentration range 0.02–5.0 g L–1, the detection limit (cL) is 0.01 g L–1 and the relative standard deviation (sr) is 3.1% at the 1.0 g L–1 level. The proposed method was evaluated by analysis of BCR CRM 278 (Mytilus Edulis) reference material and applied to the determination of total mercury in digested urine, blood and hair samples.  相似文献   

7.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

8.
The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO3 + H2O2 was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of ‘HF-memory effect’ was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.  相似文献   

9.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

10.
Qiang Fu  Qiuquan Wang 《Talanta》2007,72(4):1248-1254
A newly synthesized alkyl phosphinic acid resin (APAR) was used for on-line preconcentration of trace rare earth elements (REES, lanthanides including yttrium) and then determined by inductively coupled plasma mass spectrometry. REEs in seawater could be on-line concentrated on the APAR packed column (4.6 mm i.d. × 50 mm in length), and eluted from the column with 0.5 mL 0.1 mol L−1 nitric acid within 30 s. An enrichment factor of nearly 400 was achieved for all REEs when the seawater sample volume was 200 mL, while the matrix and coexisting spectrally interfering ions such as barium, tin and antimony could be simultaneously separated. The detection limits of this proposed method for REEs were in the range from 1.43 pg L−1 of holmium to 12.7 pg L−1 of lanthanum. The recoveries of REEs were higher than 97.9%, and the precision of the relative standard deviation (R.S.D., n = 6) was less than 5%. The method has been applied to the determination of soluble REEs in seawater.  相似文献   

11.
An analytical method for the simultaneous determination of some trace elements (Au, Fe, Mg, Li, Sr, Zn) in human serum by inductively coupled plasma atomic emission spectrometry (ICP-AES) with flow injection is described. Physical interference caused by the change of sample viscosity is discussed. When 100 μl of serum was injected, the relevant recoveries of > 99% for Li, > 98% for Cu and Mg, > 95% for Fe were obtained for an NIST SRM with R.S.D. > 1.3% using optimized flow injection parameters. The prepared lyophilized control serum for routine analysis in clinical laboratories was analyzed and verified for the validity of the technique employed in this experiment using NIST SRM 909 as a primary reference material.  相似文献   

12.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

13.
In the present work, an inductively coupled plasma atomic emission spectrometry (ICP-AES) system was used as a high temperature liquid chromatography (HTLC) detector for the determination of alcohols and metals in beverages. For the sake of comparison, a refractive index (RI) detector was also employed for the first time to detect alcohols with HTLC. The organic compounds studied were methanol, ethanol, propan-1-ol and butan-1-ol (in the 10-125 mg/L concentration range) and the elements tested were magnesium, aluminum, copper, manganese and barium at concentrations included between roughly 0.01 and 80 mg/L. Column heating temperatures ranged from 80 to 175 °C and the optimum ones in terms of peak resolution, sensitivity and column lifetime were 125 and 100 °C for the HTLC-RI and HTLC-ICP-AES couplings, respectively. The HTLC-ICP-AES interface design (i.e., spray chamber design and nebulizer type used) was studied and it was found that a single pass spray chamber provided about 2 times higher sensitivities than a cyclonic conventional design. Comparatively speaking, limits of detection for alcohols were of the same order for the two evaluated detection systems (from 5 to 25 mg/L). In contrast, unlike RI, ICP-AES provided information about the content of both organic and inorganic species. Furthermore, temperature programming was applied to shorten the analysis time and it was verified that ICP-AES was less sensitive to temperature changes and modifications in the analyte chemical nature than the RI detector. Both detectors were successfully applied to the determination of short chain alcohols in several beverages such as muscatel, pacharan, punch, vermouth and two different brands of whiskeys (from 10 to 40 g of ethanol/100 g of sample). The results of the inorganic elements studied by HTLC-ICP-AES were compared with those obtained using inductively coupled plasma mass spectrometry (ICP-MS) obtaining good agreement between them. Recoveries found for spiked samples were close to 100% for both, inorganic elements (with both HLTC-ICP-AES and ICP-MS) and alcohols (with both HTLC-ICP-AES and HTLC-RI hyphenations).  相似文献   

14.
The on-line column preconcentration technique with inductively coupled plasma optical emission spectroscopy (ICP–OES) has been developed using a cartridge filled with octadecyl silica modified by l-(2-pyridylazo) 2-naphtol (PAN). The aim of this method was to determine some rare earth elements (REEs) (Ce, Dy, La, Sm, and Y) and uranium in water samples. Sample solutions were passed through the C18-modified column. The adsorbed cations were subsequently eluted from the column and transferred into the plasma with nitric acid solution for simultaneous determination of them. Sample pH, amount of PAN as a complexing agent, sampling and eluting flowrates and concentration of the eluent were optimized. Detection limits based on three times of standard deviations of blank by 10 replicates were in the range of 11 ng l−1 for Dy to 69 ng l−1 for U. Sample throughput was 10 samples h−1. The proposed method was applied to determine REEs in natural water samples. Recoveries of the REEs from natural water samples were between 95 and 106% with percent relative standard deviation (%R.S.D.) of 1.0–7.9%.  相似文献   

15.
The Ba and Ti macroconstituents as well as the impurities and dopants content (Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Si, Sr, W, Zn and Zr) in a dense (> 98% theoretical) barium titanate sample have been determined by inductively coupled plasma-atomic emission spectrometry after one of these decomposition routes: (a) decomposition with HCl in a PTFE-lined pressure vessel, (b) fusion with Na2CO3 in a platinum crucible, and (c) fusion with Li2B4O7 in a graphite crucible. Matrix effects were taken into account. Detection limits for minors and trace elements were determined. High sensitivity and good precision were attained.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

16.
利用带八极杆碰撞/反应池和屏蔽炬技术的电感耦合等离子体质谱直接测定混凝土中Cr,Mn,Ni,Cu,Zn,As,Cd,Sn,Sb,Pb等多种重金属元素的溶出量。通过向碰撞池中引入氢气和氦气消除多元素分子离子的干扰,以50μg/L的Ge,In,Tb为内标元素校正基体干扰和漂移。10种待测元素的检出限为0.001~0.033μg/L,相对标准偏差为0.85%~2.8%,样品的加标回收率在91.1%~103.9%之间。  相似文献   

17.
A simple and sensitive flow injection analysis-atomic absorption spectrometric procedure is described for the determination of cobalt. The method is based upon on-line preconcentration of cobalt on a microcolumn of 2-nitroso-1-naphthol immobilized on surfactant coated alumina. The trapped cobalt is then eluted with ethanol (250 μl) and determined by flame atomic absorption spectrometry. The analytical figures of merit for the determination of cobalt are as follows: detection limit (3 S), 0.02 ng ml−1; precision (RSD), 2.8% for 20 ng ml−1 and 1.7% for 70 ng ml−1 of cobalt; enrichment factor, 125 (using 25 ml of sample). The method has been applied to the determination of cobalt in water samples, vitamin B12 and B-complex ampoules and accuracy was assessed through recovery experiment and independent analysis by furnace AAS.  相似文献   

18.
为了准确测定锰矿冶炼烟尘中重金属元素的含量,为锰矿冶炼过程中监测和评价环境影响提供有力的数据支撑,采用HCl+HNO3+HClO4+HF消解体系对试样进行前处理,通过选用合适的内标溶液消除测定中的非质谱干扰,采用碰撞池模式和编辑校正方程消除质谱干扰,从而建立了电感耦合等离子体质谱法测定锰矿冶炼烟尘中的Cr、Ni、Cd、Tl、Pb等多种重金属元素的方法。实验结果表明,各元素标准曲线的线性相关系数均大于0.999 9,方法检出限为0.007~0.094 mg/kg,样品测定的相对标准偏差(RSD,n=11)在0.43%~4.9%,样品加标回收率为93.8%~107%。方法具有操作简便、线性范围宽、检出限低、精密度高等优点,满足锰矿冶炼烟尘中Cr、Ni、Cd、Tl、Pb等多种重金属元素同时测定的要求。  相似文献   

19.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

20.
Carrilho EN  Nóbrega JA  Gilbert TR 《Talanta》2003,60(6):1131-1140
The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH<2 with diluted HCl. The enrichment factors for CuII, FeIII, AlIII and CoII were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号