首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of ethidium bromide (EB) and acridine orange (AO) with double stranded (ds), thermally denatured (ss) and supercoiled (sc) DNA, in solution, was studied by alternating current voltammetry (AC voltammetry) at the hanging mercury drop electrode (HMDE) in 0.3 M NaCl+50 mM sodium phosphate buffer (pH 8.5). Their interaction with DNA is shown to be time dependent and completely different. The changes at peak 2 (peak at −1.20 V) of dsDNA form and the appearance of peak 3 (peak at −1.42 V) in scDNA form are presented as criteria declaring the different mechanism of interaction of EB and AO with DNA. Additionally, the appearance of a new peak at around −0.44 V as a result of DNA and AO interaction, differentiates the studied behaviors. The comparison of the electrochemical behaviors of these compounds highlights the differences in the mechanism of interaction.  相似文献   

2.
P. Palaska 《Talanta》2007,72(3):1199-1206
The interaction of cyclophosphamide (CP) with calf thymus double-stranded DNA (dsDNA) and thermally denatured single-stranded DNA (ssDNA) immobilized at the carbon paste (CPE) and pencil graphite electrodes (PGE), was studied electrochemically based on oxidation signals of guanine and adenine using differential pulse voltammetry (DPV).As a result of the interaction of CP with DNA, the voltammetric signals of guanine and adenine increased in the case of dsDNA while a slight increase was observed in ssDNA. The effect of experimental parameters such as the interaction time between CP and DNA forms and the concentration of CP, were studied using DPV with CPE and PGE. Additionally, reproducibility and detection limits were determined using both electrodes. A comparison of the analytical performance between CPE and PGE was done. Our results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of CP itself as well as of CP-DNA interaction.Furthermore, the interaction of CP with dsDNA and ssDNA was studied in solution and at the electrode surface by means of alternating current voltammetry (ACV) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) supporting electrolyte, using a hanging mercury drop electrode (HMDE) as working electrode.The conclusions of this study were mainly based on tensammetric peaks I (at −1.183 V) and II (−1.419 V) of DNA. This study involved the interaction of CP with surface-confined and solution phase DNA where experimental parameters, such as the concentration of CP and the interaction time, were studied. By increasing the concentration of CP, an increase of peak II was observed in both ds and ssDNA, while an increase of peak I was observed only in the case of dsDNA. An overall conclusion of the study using HMDE was that the interaction of CP with surface-confined DNA significantly differed from that with solution phase DNA. The increase of peaks I and II was lower in the case of interaction of CP with surface-confined DNA, probably due to steric positioning of DNA at the electrode surface.  相似文献   

3.
《Electroanalysis》2002,14(23):1615-1620
Electrochemically modified glassy carbon electrode (GCE) was used to study the electrochemical oxidation and detection of denatured single‐stranded (ss) DNA by means of adsorptive stripping voltammetry. The modification of GCE, by electrochemical oxidation at +1.75 V (vs.SCE) for 10 min and cyclic sweep between +0.3 V and ?1.3 V for 20 cycles in pH 5.0 phosphate buffer, results in 100‐fold improvement in sensitivity for ssDNA detection. We speculated that the modified GCE has a high affinity to single‐stranded DNA through hydrogen bond (specific static adsorption). Single‐stranded DNA can accumulate at the GCE surface at open circuit and produce a well‐defined oxidation peak corresponding to the guanine residues at about +0.80 V in pH 5.0 phosphate buffer, while the native DNA gives no signal under the same condition. The peak currents are proportional to the ssDNA concentration in the range of 0–18.0 μg mL?1. The detection limit of denatured ssDNA is ca. 0.2 μg mL?1 when the accumulation time is 8 min at open circuit. The accumulation mechanism of ssDNA on the modified GCE was discussed.  相似文献   

4.
Stanić Z  Girousi S 《Talanta》2008,76(1):116-121
The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.  相似文献   

5.
《Analytical letters》2012,45(9):1491-1506
Curcumin, the major active component of the spice turmeric, which is considered to be a very useful compound in health matters, is recognized as a safe component with great potential for cancer chemoprevention and cancer therapy. For the first time, an interaction between the non-toxic agent curcumin and double stranded (ds) calf thymus DNA has been demonstrated by using voltammetry. The interaction of curcumin (CU) with dsDNA was studied using a carbon paste electrode (CPE) and a hanging mercury drop electrode (HMDE). Significant changes in the characteristic peaks of dsDNA were observed after addition of curcumin to a solution containing dsDNA.  相似文献   

6.
《Analytical letters》2012,45(9):1750-1762
Abstract

The interaction between clozapine (CLZ) as an orally administrated antipsychotic drug with double stranded calf thymus DNA (dsDNA) was investigated at electrode surface using differential pulse voltammetry (DPV). Activated carbon paste electrode (CPE) was modified with dsDNA and used for monitoring the changes of the characteristics peak of CLZ in 0.05 M acetate buffer (pH 4.3). The adsorptive stripping voltammetry on dsDNA‐modified carbon paste electrode (dsDNA‐CPE) was used for determination of very low concentration of CLZ. Under optimal conditions, the oxidation peak current is proportional to CLZ concentration in the range of 7×10?9?1.2×10?6 mol l?1 with a detection limit of 1.5×10?9 mol l?1 for 180 s accumulation time by DPV. The proposed dsDNA‐CPE was successfully used for determination of CLZ in human serum samples with recovery of 97.0±2.5%.  相似文献   

7.
《Analytical letters》2012,45(8):1479-1490
ABSTRACT

A single stranded Cecropin CM4 gene (108 bases) was further immobilized at a cysteine modified gold electrode with the help of water soluble 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The ssDNA at the modified electrode could undergo hybridization in a hybridization buffer containing single stranded plasmid pLCM-4SN. A DNA minor groove binder, Hoechst 33258, was employed to discriminate between ssDNA and dsDNA. The anodic waves in differential pulse voltammograms (DPVs), of Hoechst 33258 bound to the DNAs, were used as the indicator. This assay procedure was shown to be rapid, sensitive and precise, thus a kind of prototype DNA biosensor was developed.  相似文献   

8.
A mixed‐ligands copper complex [Cu(phendione)(DAP)]SO4 (phendione=1,10‐phenanthroline‐5,6‐dione, DAP=2,3‐diaminophenazine) was synthesized. Cyclic voltammetry showed that the complex underwent an obvious decrease of redox peak currents and positive shift of formal potential after interaction with double‐stranded DNA (dsDNA), suggesting that the copper complex behaved as a typical metallointercalator for dsDNA, The recognition properties of the copper complex to single‐stranded DNA (ssDNA) and dsDNA were assessed using surface‐based electrochemical methods and the results suggested that the complex had obviously different redox signals at ssDNA and dsDNA modified electrodes. The copper complex was further used as an electroactive indicator for the detection of cauliflower mosaic virus (CaMV) 35S promoter gene.  相似文献   

9.
A facile and multi-response strategy for studying the transformations of human telomere DNA from single strand (ss) to double strand (ds) and G-quadruplex has been established by using positively charged gold nanorod (AuNR) as an optical label. The conformation change information of the telomere DNA was transferred into multiple optical signals, including changes in fluorescence emission, near infrared (NIR) absorption, plasma resonance light scattering (PRLS) and dynamic light scattering (DLS) response. The formations of dsDNA and G-quadruplex DNA induced fluorescence quenching of dye on DNA, and were accompanied by the intensity decrease and blue shift of the longitudinal absorption peak of AuNRs. Meanwhile, PRLS and DLS results revealed slightly increased AuNR aggregation due to increased charge density of dsDNA and G-quadruplex DNA as compared to ssDNA. Control experiment suggests that the AuNR-based assay is highly sequence specific; and the high sensitivity allows the study of human telomere DNA at a concentration as low as 58 nM.  相似文献   

10.
Sun X  He P  Liu S  Ye J  Fang Y 《Talanta》1998,47(2):487-495
A synthesized 24-mer single-stranded deoxyribonucleic acid (ssDNA) was covalently immobilized onto a self-assembled aminoethanethiol monolayer modified gold electrode, using water-soluble 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDC). The covalently immobilized ssDNAs were hybridized with complementary ssDNA (cDNA) or yAL(3) gene in solution, forming double-stranded DNAs (dsDNA). Meanwhile, daunomycin as an electrochemical active intercalator in the hybridization buffer solution was intercalated into the dsDNA to form a dsDNA/daunomycin system on the gold electrode surface, which was used for DNA electrochemical sensor. The cathodic waves of daunomycin bound to the double-stranded DNA (dsDNA) by linear sweep voltammetry were utilized to detect the cDNA. The cathodic peak current (i(pc)) of duanomycin was linearly related to the concentrations of cDNA between 0.1 mug ml(-1) and 0.1 ng ml(-1). The detection limit was about 30 pg ml(-1).  相似文献   

11.
Honglan Qi 《Talanta》2007,72(3):1030-1035
A sensitive electrochemical detection of DNA hybridization using a paste electrode assembled by multi-wall carbon nanotubes (MWNT) and immobilizing DNA probe within electropolymerized polypyrrole (ppy) was developed. The detection approach relied on entrapping of DNA probe within electropolymerized ppy film on the MWNT paste electrode and monitoring the current change generated from an electroactive intercalator of ethidium bromide (EB) after DNA hybridization. As a consequence of DNA hybridization, significant changes in the current of EB intercalated with double-stranded DNA (ds-DNA) on the MWNT paste electrode were observed. Based on the response of EB, only the complementary DNA sequence gave an obvious current signal compared with the five-point mismatched and non-complementary sequences. The oxidation peak current was linearly related to the logarithm of the concentration of the complementary DNA sequence from 1.0 × 10−10 to 1.0 × 10−8 M with a detection limit of 8.5 × 10−11 M. This work demonstrates that the incorporation of MWNT paste electrode with electropolymerization is a promising strategy of functional interfaces for the immobilization of biological recognition elements.  相似文献   

12.
Dogan-Topal B  Ozkan SA 《Talanta》2011,83(3):780-788
The anticancer drug, leuprolide (LPR) bound to double-stranded fish sperm DNA (dsDNA) which was immobilized onto the surface of an anodically activated pencil graphite electrode (PGE), was employed for designing a sensitive biosensor. The interaction of leuprolide (LPR) with double-stranded DNA (dsDNA) immobilized onto pencil graphite electrode (PGE) have been studied by electrochemical methods. The mechanism of the interaction was investigated and confirmed by differential pulse voltammetry using two different interaction methods; at the PGE surface and in the solution phase. The decrease in the guanine oxidation peak current was used as an indicator for the interaction in acetate buffer at pH 4.80. The response was optimized with respect to accumulation time, potential, drug concentration, and reproducibility for both interaction methods. The linear response was obtained in the range of 0.20-6.00 ppm LPR concentration with a detection limit of 0.06 ppm on DNA modified PGE and between 0.20 and 1.00 ppm concentration range with detection limit of 0.04 ppm for interaction in solution phase method. LPR showed an irreversible oxidation behavior at all investigated pH values on a bare PGE. Differential pulse adsorptive stripping (AdSDPV) voltammetric method was developed for the determination of LPR. Under these conditions, the current showed a linear dependence with concentration within a range of 0.005-0.20 ppm with a detection limit of 0.0014 ppm. Each determination method was fully validated and applied for the analysis of LPR in its pharmaceutical dosage form.  相似文献   

13.
ssDNA/十八酸修饰碳糊电极的制备及伏安法表征   总被引:12,自引:0,他引:12  
焦奎  张旭志  徐桂云  孙伟 《化学学报》2005,63(12):1100-1104
将石墨粉与十八酸在80 ℃下混合制成表面富含—COOH的基底碳糊电极(SA/CPE), 然后在活化剂N-羟基琥珀酰亚胺(NHS)和1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)存在下将ssDNA固定到电极表面制备ssDNA修饰电极(ssDNA/SA/CPE). 以亚甲基蓝(MB)为指示剂, 用循环伏安法对SA/CPE和ssDNA/SA/CPE进行电化学表征, 发现其在ssDNA/SA/CPE上较在SA/CPE上的氧化峰电流(ipa)和还原峰电流(ipc)分别增大1.9倍和1.7倍, 式电势(Ef)负移8 mV. 把ssDNA/SA/CPE放在互补ssDNA溶液中杂交后, MB的ipaipc较在SA/CPE上分别增大1.0倍和0.8倍, Ef负移18 mV. 用0.5 mol/L 的NaOH溶液冲洗使电极表面杂交而成的dsDNA变性洗脱, MB的伏安信号几乎与在ssDNA/SA/CPE上一样. ipc与SA/CPE上固定的ssDNA质量在1.0×10-7~5.0×10-6 g范围内成线性关系, 检测限为2.0×10-9 g (S/N=3). 这种既廉价又灵敏的电化学生物传感器有望在转基因植物产品检测研究中得到应用.  相似文献   

14.
A novel and sensitive electrochemical DNA biosensor has been developed for the detection of DNA hybridization. The biosensor was proposed by using copper(II) complex of Luteolin C30H18CuO12 (CuL2) as an electroactive indicator based on silver nanoparticles and multi-walled carbon nanotubes (Ag/MWCNTs) modified glassy carbon electrode (GCE). In this method, the 4-aminobenzoic acid (4-ABA) and Ag nanoparticles were covalently grafted on MWCNTs to form Ag/4-ABA/MWCNTs. The proposed method dramatically increased DNA attachment quantity and complementary ssDNA detection sensitivity for its large surface area and good charge-transport characteristics. DNA hybridization detection was performed using CuL2 as an electroactive indicator. The CuL2 was synthesized and characterized using elemental analysis (EA) and IR spectroscopy. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction between CuL2 and ds-oligonucleotides (dsDNA). It was revealed that CuL2 presented high electrochemical activity on GCE, and it could be intercalated into the double helices of dsDNA. The target ssDNA of the human hepatitis B virus (HBV) was quantified in a linear range from 3.23 × 10−12 to 5.31 × 10−9 M (r = 0.9983). A detection limit of 6.46 × 10−13 M (3σ, n = 11) was achieved.  相似文献   

15.
Hason S  Dvorák J  Jelen F  Vetterl V 《Talanta》2002,56(5):905-913
The capacitance measurement (dependence of the differential capacitance C of the electrode double layer on potential E, C-E curves), electrochemical impedance spectroscopy (frequency response of the impedance Z of the electrode double layer-EIS) and constant current chronopotentiometry (dependence of dt/dE on potential at constant current, chronopotentiometric stripping analysis-CPSA) have been used for electrochemical study of echinomycin and its interaction with single-stranded (ss) and double-stranded (ds) DNA at the hanging mercury drop electrode (HMDE). The capacitance measurement showed that echinomycin gives a pseudocapacitance redox peak strongly dependent on the a.c. voltage frequency at the potential of -0.53 V. This peak is observed with dsDNA-echinomycin complex as well, but not with ssDNA treated by echinomycin. Similar results were obtained using CPSA measurements. Thus capacitance measurements and CPSA can distinguish with the aid of the bis-intercalator echinomycin the single-stranded and double helical form of DNA adsorbed at the mercury electrode surface. Impedance measurement in connection with adsorptive transfer technique can find the differences between ssDNA and dsDNA, which promise to use this technique for detection of dsDNA in hybridisation reactions.  相似文献   

16.
Direct electrochemistry of dsDNA has been achieved by using an ionic liquid 1-butyl-4-methylpyridinium hexafluorophosphate modified carbon nanotubes paste electrode (IL-CNTPE). Oxidation peaks appeared at 0.93 and 1.26 V (vs. Ag/AgCl) on the IL- CNTPE after preconcentration of dsDNA in pH 5.0 acetate buffer, which were attributed to the oxidation of guanine and adenine residues on the dsDNA molecule structure. Based on the signal of guanine, under the optimal conditions, very low levels of dsDNA can be detected after 60 s accumulation with detection limits of 0.249 mg L 16 pM. Additionally, human DNA from a healthy volunteer is determined by use of the IL-CNTPE and it is found to be 40 ± 2, 14 pM.  相似文献   

17.
In the present study, the interactions between actinomycin D (ActD) and single stranded DNA (ssDNA) 5′-CGTAACCAACTGCAACGT-3′ and a duplex stranded DNA (dsDNA) with this sequence were investigated by microchip-based non-gel sieving electrophoresis and electrospray ionization mass spectrometry (ESI-MS). The ssDNA was designed according to the conserved regions of open reading frame 1b (replicase 1B) following the Tor 2 SARS genome sequence of 15611-15593. The binding constants of the interactions between ActD and ssDNA/dsDNA were (8.3 ± 0.32) × 106 M−1 (ssDNA) and (2.8 ± 0.02) × 105 M−1 (dsDNA), respectively, calculated from microchip electrophoresis via Scatchard plot. The binding stoichiometries were 1:1 (single/1ActD molecule) and 1:2 (duplex/2ActD molecules) calculated from microchip electrophoresis, and the results were further verified by ESI-MS. The results obtained by these two methods indicated that ActD bound much more tightly to ssDNA used in this work than dsDNA. Furthermore, this is shown that the microchip-based non-gel sieving electrophoresis method is a rapid, highly sensitive and convenient method for the studies of interactions between DNA and small molecule drugs.  相似文献   

18.
Radi A 《Talanta》2005,65(1):271-275
The voltammetric behaviour of chloroquine was investigated at carbon paste and dsDNA-modified carbon paste electrodes in different buffer systems over a wide pH range using cyclic and differential pulse voltammetry. Chloroquine was oxidized in the pH range 2.0-11.0 yielding one irreversible main oxidation peak. A second peak was also observed only in the pH range 5.0-7.0. The modification of the carbon paste surface with dsDNA allowed a preconcentration process to take place for chloroquine such that higher sensitivity was achieved as compared with the bare surface. The response was characterized with respect to solution pH, ionic strength, accumulation time and potential, chloroquine concentration, and other variables. Stripping voltammetric response showed a linear calibration curve in the range 1.0 × 10−7 to 1.0 × 10−5 mol l−1 with a detection limit of 3.0 × 10−8 mol l−1 at the dsDNA-modified electrode. Application of the modified electrode to serum, without sample pretreatment, resulted in good recovery higher than 95% and the higher standard deviation was 3.0%.  相似文献   

19.
Described here are the chronocoulometric and voltammetric parameters for methylene blue [3,7-bis(dimethylamino)phenothiazin-5-ium chloride, MB] on binding to DNA at carbon paste electrode (CPE) surface. MB, which interacts with the immobilized calf thymus DNA was detected by using single stranded DNA modified CPE (ssDNA modified CPE), bare CPE and double stranded DNA modified CPE (dsDNA modified CPE) in combination with chronocoulometry and differential pulse voltammetry (DPV) techniques. The effect of ionic strength to the behavior of MB with dsDNA and ssDNA was also studied by means of voltammetry. These results demonstrated that MB could be used as an effective electroactive hybridization indicator for DNA biosensors. Performance characteristics of the sensor are described, along with future prospects.  相似文献   

20.
A carboxyl functionalized graphene oxide (GO-COOH) and electropolymerized ploy-l-lysine (PLLy) modified glassy carbon electrode (GCE) was fabricated and used for the construction of an electrochemical deoxyribonucleic acid (DNA) biosensor. The NH2 modified probe ssDNA sequences were immobilized on the surface of GO-COOH/PLLy/GCE by covalent linking with the formation of amide bonds, which was stable and furthur hybridized with the target ssDNA sequence. Differential pulse voltammetry (DPV) was used to monitor the hybridization events with methylene blue as electrochemical indicator, which gave a sensitive reduction peak at −0.287 V (vs. SCE). Under the optimal conditions the reduction peak current was proportional to the concentration of tlh gene sequence in the range from 1.0 × 10−12 to 1.0 × 10−6 mol L−1 with a detection limit as 1.69 × 10−13 mol L−1 (3σ). The polymerase chain reaction products of tlh gene from oyster samples were detected with satisfactory results, indicating the potential application of this electrochemical DNA sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号