首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the development and testing of a setup that allows for DEP field‐flow fractionation (DEP‐FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP‐FFF separation of moderately heat‐treated CHO cells (50°C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP‐FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency.  相似文献   

2.
This paper provides an overview on separation of micron and submicron sized biological (cells, yeast, virus, bacteria, etc.) and nonbiological particles (latex, polystyrene, CNTs, metals, etc.) by dielectrophoresis (DEP), which finds wide applications in the field of medical and environmental science. Mathematical models to predict the electric field, flow profile, and concentration profiles of the particles under the influence of DEP force have also been covered in this review. In addition, advancements made primarily in the last decade, in the area of electrode design (shape and arrangement), new materials for electrode (carbon, silicon, polymers), and geometry of the microdevice, for efficient DEP separation of particles have been highlighted.  相似文献   

3.
基于SOI基底的高通量细胞电融合芯片   总被引:5,自引:0,他引:5  
提出了一种以MEMS技术为基础, 可在低电压驱动条件下工作的创新型细胞电融合芯片. 该芯片的设计原理在于通过缩短微电极间的间距, 在低电压条件下获得足够强度的排队和融合电场强度. 原型芯片以SOI硅片为加工材料, 通过刻蚀方式在顶层低阻硅形成微电极和微通道; 在微电极上沉淀2 μm厚的铝膜以降低电阻率, 提高导电性; 通过PECVD方法形成150 nm厚SiO2保障铝膜的抗腐蚀性及芯片生物相容性; 芯片最终采用DIP法进行封装. 在该芯片上进行了低电压(传统电融合设备工作电压的1/20)驱动条件下的基于介电电泳的细胞排队实验及后期的细胞电融合实验, 结果表明, 细胞多以两两结合的方式排列, 与传统的细胞融合电仪器相比较, 降低了多细胞排队概率, 进而减少了传统电融合设备多细胞融合的概率, 为细胞高效率融合奠定了基础. 在加载的低电压短脉冲信号后, 微通道中形成了高压短脉冲电场, 在脉冲作用下, 烟草原生质体细胞在微通道中发生了融合, 融合时间(2 min)远低于传统电融合方法(10~30 min), 融合率远远高于传统的PEG方法(融合率小于1%)和传统电融合方法(利用BTX ECM 2001细胞电融合系统得到, 融合率小于5%).  相似文献   

4.
The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator‐based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage.  相似文献   

5.
A model system consisting of a mixture of latex beads and erythrocytes has been investigated to demonstrate the practical feasibility of particle separation by means of the combined application of negative dielectrophoresis and hyperlayer field-flow fractionation. The dielectrophoretic levitation of latex beads is demonstrated by energizing interdigitated electrodes, of widths and separation ranging from 5 to 40 μm, with AC signals of 0–10 V (rms) in the frequency range 1 kHz–10 MHz. Maximum levitation was attained at 1 MHz, at which frequency levitation is relatively independent of the suspending medium conductivity. Levitation was also independent of particle size, but dependent on particle density and dielectric properties. At 1 MHz the erythrocytes were attracted to the electrodes by positive dielectrophoresis, and so could be separated from the latex beads by fluid flow. The electric field and field gradient above the electrodes were also computer modelled, and this information was used to design the electrode and chamber geometries for optimum DEP-field-flow fractionation.  相似文献   

6.
We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field‐flow fractionation. The electrode configuration is such that multiple finite‐sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady‐state levitation height.  相似文献   

7.
The performance of conventional surface plasmon resonance (SPR) biosensors can be limited by the diffusion of the target analyte to the sensor surface. This work presents an SPR biosensor that incorporates an active mass‐transport mechanism based on dielectrophoresis and electroosmotic flow to enhance analyte transport to the sensor surface and reduce the time required for detection. Both these phenomena rely on the generation of AC electric fields that can be tailored by shaping the electrodes that also serve as the SPR sensing areas. Numerical simulations of electric field distribution and microparticle trajectories were performed to choose an optimal electrode design. The proposed design improves on previous work combining SPR with DEP by using face‐to‐face electrodes, rather than a planar interdigitated design. Two different top‐bottom electrode designs were experimentally tested to concentrate firstly latex beads and secondly biological cells onto the SPR sensing area. SPR measurements were then performed by varying the target concentrations. The electrohydrodynamic flow enabled efficient concentration of small objects (3 μm beads, yeasts) onto the SPR sensing area, which resulted in an order of magnitude increased SPR response. Negative dielectrophoresis was also used to concentrate HEK293 cells onto the metal electrodes surrounded by insulating areas, where the SPR response was improved by one order of magnitude.  相似文献   

8.
Srinivas M  Sant HJ  Gale BK 《Electrophoresis》2010,31(20):3372-3379
Cyclical electrical field flow fractionation (CyElFFF) is a variation on electrical field flow fractionation (ElFFF) where cyclical electrical fields are used instead of steady DC fields to increase the effective field experienced by particles in the flow channel. Even though the effective field increases more than 20-fold compared to normal ElFFF, the retention and resolution in CyElFFF has not been shown to be better than in ElFFF. In this paper we report how one can optimize operational parameters in CyElFFF to obtain good retention and resolution in CyElFFF. The effects of offset voltage, frequency, flowrate, concentration of particles and sample size on retention, resolution and retained peak/void peak ratio have been observed. The results obtained from these experiments were analyzed and suggestions have been made to improve both retention and resolution. A 4-fold improvement in retention without a significant increase in band broadening is reported.  相似文献   

9.
A novel scheme for particle separation with insulator‐based dielectrophoresis (iDEP) was developed. This technique offers the capability for an inverted order in particle elution, where larger particles leave the system before smaller particles. Asymmetrically shaped insulating posts, coupled with direct current (DC) biased low‐frequency alternating current (AC) electric potentials, were used to successfully separate a mixture of 500 nm and 1 μm polystyrene particles (size difference of 0.5 μm in diameter). In this separation, the 1 μm particles were eluted first, demonstrating the discriminatory potential of this methodology. To extend this technique to biological samples, a mixture containing Saccharomyces cerevisiae cells (6.3 μm) and 2 μm polystyrene particles was also separated, with the cells being eluted first. The asymmetric posts featured a shorter sharp half and a longer blunt half; this produced an asymmetry in the forces exerted on the particles. The negative DC offset produced a net displacement of the smaller particles toward the upstream direction, while the post asymmetry produced a net displacement of the larger particles toward the downstream direction. This new iDEP approach provides a setup where larger particles are quickly concentrated at the outlet of the post array and can be released first when in a mixture with smaller particles. This new scheme offers an extra set of parameters (alternating current amplitude, DC offset, post asymmetry, and shape) that can be manipulated to obtain a desired separation. This asymmetric post iDEP technique has potential for separations where it is important to quickly elute and enrich larger and more fragile cells in biological samples.  相似文献   

10.
《Electrophoresis》2017,38(7):977-982
Microfluidic systems with modular components are attractive alternatives to monolithically integrated microfluidic systems because of their flexibility. In this study, we apply the modular concept on a water‐head‐pressure‐driven microfluidic oscillator and obtain a widely tunable flow rate and fluidic switching period. Modular fluidic resistors can be easily mounted onto and demounted from a main chip by means of plastic male connectors. The connectors enable a leak‐free connection between the modular resistors and main chip (leakage pressure > 140 kPa). With modular resistors, we show independent control of the flow rate and flow switching period of the oscillator system in a wide range (2.5 s–6.4 h and 2 μL/min–2 mL/min). This modular approach can be used to enhance the flexibility of instruction‐embedded microfluidic circuits in which their operational range is limited.  相似文献   

11.
A new arraying method is presented based on the properties of poly(dimethylsiloxane) (PDMS) polymer to entrap beads bearing biologically active compounds. It is shown that such beads could be spotted and dried at the surface of a poly(vinyl chloride) master and subsequently transferred at the PDMS interface by direct moulding of the polymer on the mask. Moreover, the use of the PDMS-assisted-immobilization enables the development of either a low density array (100 spots) or a micro-channel biochip with a direct incorporation of the sensing element in a fluidic system for the quantitative detection of enzyme substrates, antigens and oligonucleotides, depending on the immobilized sensing element. All biochip formats were revealed by a chemiluminescent reaction detected with a charge coupled device camera.As a result, arrays of beads bearing active enzymes, antibodies and oligonucleotides were successfully obtained and enabled the achievement of biochips for the chemiluminescent detection of enzyme substrates, protein antigens and oligonucleotides sequence with detection limit of 1 μM, 1.5×107 molecules and 108 molecules, respectively.  相似文献   

12.
Nanomaterials manipulation using dielectrophoresis (DEP) is one of the major research areas that could potentially benefit the micro/nano science for diverse applications, such as microfluidics, nanomachine, and biosensor. The innovation and development of basic theories, methods or applications will have a huge impact on the entire related field. Specifically, for DEP manipulation of nanomaterials, improvements in comprehensive performance of accuracy, flexibility and scale could promote broader applications in micro/nano science. Therefore, to explore the directions for future research, this paper critically provides an overview on the fundamentals, recent progress, current challenges, and potential applications of DEP manipulation of nanomaterials. This review will also act as a guide and reference for researchers to explore promising applications in relevant research.  相似文献   

13.
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 Vrms). The nanoprobe is fabricated using room temperature self‐assembly methods, without the need for nanoresolution lithography. The nanoprobe (150–500 nm in diameter, 2–150 μm in length) is mounted on the end of a glass micropipette, enabling user‐specified positioning. The nanoprobe is one electrode within a point‐and‐plate configuration, with an indium–tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro‐hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m).  相似文献   

14.
Chen Z  Chauhan A 《Electrophoresis》2007,28(5):724-739
Electric field-flow fractionation (EFFF) is a separation technique that couples a lateral electric field with axial Poiseuille flow to separate particles on the basis of size and/or mobility. In unidirectional EFFF, the field rapidly decreases in time due to charging of the double layer. The field strength could be increased by performing EFFF with cyclic electric fields. In cyclic electric field-flow fractionation (CEFFF), a periodic voltage, which can be either sinusoidal or square-wave, is applied in the lateral direction. In this paper, we measure the electrochemical response of CEFFF, i.e., the current-time response for a given time-dependent voltage and then utilize this electrochemical response in a transport model to predict separation. The CEFFF device studied here comprises two gold-coated glass plates separated by a spacer. The transient current profiles are measured for a step change and cyclic square-shaped voltage. The current profile is compared with the equivalent circuit model, and is fitted to a sum of two decaying exponentials. The dependence of the electrochemical response on voltage, frequency, channel thickness, and salt concentration is studied. Next, the electrochemical data are utilized in the convection-diffusion equation to develop a model for separation by CEFFF. The equations are solved by using a combination of analytical and numerical techniques to determine the mean velocity and the dispersion coefficient of molecules, and to determine the effect of various parameters on the separation efficiency of the EFFF device. Also, the model predictions are compared with experimental data available in the literature.  相似文献   

15.
The behavior of nanometer or micrometer-sized particles, dispersed in liquid phase and exposed to temperature gradient, is a complex and not yet well understood phenomenon. Thermal field-flow fractionation (TFFF), using conventional-size channels, played an important role in the studies of this phenomenon. In addition to thermal diffusion (thermophoresis) and molecular diffusion or Brownian movement, several secondary effects such as particle–particle and/or particle–wall interactions, chemical equilibria with the components of the carrier liquid, buoyant and lift forces, etc., may contribute to the retention and complicate the understanding of the relations between the thermal diffusion and the characteristics of the retained particles. Microthermal FFF is a new high-performance technique allowing much easier manipulation and control of the operational parameters within an extended range of experimental conditions in comparison with conventional TFFF. Consequently, in combination with various other methods, it is well suited for a detailed investigation of the mentioned effects. In this work, some contradictory published results concerning the thermal diffusion of the colloidal particles, studied by TFFF but also by other methods, are analyzed and compared with our experimental findings.  相似文献   

16.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

17.
Field-flow fractionation (FFF) is one of the most versatile separation techniques in the field of analytical separation sciences, capable of separating macromolecules in the range 103–1015 g mol−1 and/or particles with 1 nm–100 μm in diameter. The most universal and most frequently used FFF technique, flow FFF, includes three types of techniques, namely symmetrical flow FFF, hollow fiber flow FFF, and asymmetrical flow FFF which is most established variant among them. This review provides a brief look at the theoretical background of analyte retention and separation efficiency in FFF, followed by a comprehensive overview of the current status of asymmetrical flow FFF with selected applications in the field of biopolymers and bioparticles.  相似文献   

18.
A polyimide substrate based microfluidic chip with thousands of comb‐shaped microelectrodes has been designed, fabricated, and tested for sterilization of bacteria by using pulsed electric field. The performance of bacteria sterilization as functions of the electric field strength, pulse number and width, treatment buffer, bacteria growth status, and bacteria enrichment by positive dielectrophoresis has been experimentally investigated on the microfluidic chip. Experimental results show that only 100 V are sufficient to obtain good sterilization of Escherichia coli. Higher electric field strength, bacteria enrichment by positive dielectrophoresis, longer pulse time, buffer with fewer components and nutritions, and suitable bacteria growth status also improve the sterilization of bacteria. In addition, configuration of the microelectrode array affects bacteria sterilization. This microfluidic device allows one to preconcentrate bacteria to a region with high electric field strength by using positive dielectrophoresis, and subsequently kill the enriched bacteria by applying a pulsed electric field through the same microelectrode array.  相似文献   

19.
Ermolina I  Milner J  Morgan H 《Electrophoresis》2006,27(20):3939-3948
This paper reports experimental results on the dielectrophoretic (DEP) behaviour on two nonenveloped plant viruses of different geometrical shapes, namely Cow Pea Mosaic Virus (CPMV) and Tobacco Mosaic Virus (TMV). The DEP properties of carboxy-modified latex beads of the same size are also reported. The DEP properties of single particles were obtained from measurement of the frequency at which the DEP force on a particle goes to zero (the crossover frequency). The DEP behaviour of particle ensembles was also measured using image processing. The dielectric properties of the particles were evaluated from the DEP data. The surface conductance was found to be 0.3 nS for CPMV, 0.38 nS for TMV, and 0.52 nS for 27 nm diameter carboxy-latex beads. Data analysis has shown that the optimal condition for separation of TMV and CPMV is a low-conductivity suspending medium - below 1 mS/m.  相似文献   

20.
DNA origami is a widely used method for fabrication of custom‐shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick‐like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved “C”‐shaped and angular “L”‐shaped origamis were trapped with nanoscale precision and single‐structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol‐linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single‐structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick‐like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol‐linkers tended to induce an etched “nanocanyon” in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP‐trapped origami. The results show that the demonstrated DEP‐trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP‐assisted deformation of the substrates onto which they are attached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号