首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of 1 nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 × 10−6 M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin.  相似文献   

2.
Tang L  Zhu Y  Yang X  Li C 《Analytica chimica acta》2007,597(1):145-150
An enhanced amperometric biosensor based on incorporating one kind of unique nanobiocomposite as dopant within an electropolymerized polypyrrole film has been investigated. The nanobiocomposite was synthesized by self-assembling glutamate dehydrogenase (GLDH) and poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) onto multiwall carbon nanotubes (CNTs). ζ-Potentials and high-resolution transmission electron microscopy (HRTEM) confirmed the uniform growth of the layer-by-layer nanostructures onto the carboxyl-functionalized CNTs. The size of Pt nanoparticles is approximately 3 nm. The (GLDH/Pt-DENs)n/CNTs/Ppy hybrid film was obtained by electropolymerization of pyrrole onto glassy carbon electrodes and characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and other electrochemical measurements. All methods indicated that the (GLDH/Pt-DENs)n/CNTs nanobiocomposites were entrapped within the porous polypyrrole film and resulted in a hybrid film that showed a high electrocatalytic ability toward the oxidation of glutamate at a potential 0.2 V versus Ag/AgCl. The biosensor shows performance characteristics with high sensitivity (51.48 μA mM−1), rapid response (within 3 s), low detection limit (about 10 nM), low level of interference and excellent reproducibility and stability.  相似文献   

3.
Y. Yard?m  A. Levent  Z. ?entürk 《Talanta》2010,80(3):1347-381
7,12-Dimethylbenz[a]anthracene (DMBA), is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a very potent carcinogen. Initially, the electrochemical oxidation of DMBA at the glassy carbon and pencil graphite electrodes in non-aqueous media (dimethylsulphoxide with lithium perchlorate) was studied by cyclic voltammetry. DMBA was irreversibly oxidized in two steps at high positive potentials, resulting in the ill-resolved formation of a couple with a reduction and re-oxidation wave at much lower potentials. Special attention was given to the use of adsorptive stripping voltammetry together with a medium exchange procedure on disposable pencil graphite electrode in aqueous solutions over the pH range of 3.0-9.0. The response was characterized with respect to pH of the supporting electrolyte, pre-concentration time and accumulation potential. Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in acetate buffer, pH 4.8 at +1.15 V (vs. Ag/AgCl) (a pre-concentration step being carried out at a fixed potential of +0.60 V for 360 s). The process could be used to determine DMBA concentrations in the range 2-10 nM, with an extremely low detection limit of 0.194 nM (49.7 ng L−1). The applicability to assay of spiked human urine samples was also illustrated. Finally, the interaction of DMBA with fish sperm double-stranded DNA based on decreasing of the oxidation signal of adenine base was studied electrochemically by using differential pulse voltammetry with a pencil graphite electrode at the surface and also in solution. The favorable signal-to-noise characteristics of biosensor resulted in low detection limit (ca. 46 nM) following a 300-s interaction. These results displayed that the electrochemical DNA-based biosensor could be used for the sensitive, rapid, simple and cost effective detection of DMBA-DNA interaction.  相似文献   

4.
Ahmad Umar 《Talanta》2009,77(4):1376-677
High-aspect-ratio ZnO nanowires based ultra-sensitive hydrazine amperometric sensor has been fabricated which showed a high and reproducible sensitivity of 12.76 μA cm−2 nM−1, detection limit, based on S/N ratio, 84.7 nM, response time less than 5 s, linear range from 500 to 1200 nM and correlation coefficient of R = 0.9989. This is the first report in which such a very high-sensitivity and low detection limit has been achieved for the hydrazine sensors by using ZnO nanostructures modified electrodes. Therefore, this work opens a way to utilize simply grown ZnO nanostructures as an efficient electron mediator to fabricate efficient hydrazine sensors.  相似文献   

5.
Li Z  Cui X  Zheng J  Wang Q  Lin Y 《Analytica chimica acta》2007,597(2):238-244
Carbon nanofibers (CNFs) with three microstructures, including platelet-carbon nanofibers (PCNFs), fish-bone-carbon nanofibers (FCNFs), and tube-carbon nanofibers (TCNFs), were synthesized, characterized, and evaluated for electrochemical sensing of hydrogen peroxide. The CNFs studied here show microstructures with various stacked morphologies. The sizes and graphite-layer ordering of the CNFs can be well controlled. Glassy carbon (GC) electrodes modified by CNFs were fabricated and compared for amperometric detection of hydrogen peroxide. Sensors based on PCNFs/GC, FCNFs/GC, and TCNFs/GC were used in the amperometric detection of H2O2 in solution by applying a potential of +0.65 V versus Ag/AgCl at the working electrode. The highest electrocatalytic performance was observed for PCNFs/GC among the three types of hydrogen peroxide sensors. The amperometric response of PCNFs/GC retained over 90% of the initial current of the first day up to 21 days. The linear range is from 1.80 × 10−4 to 2.62 × 10−3 M with a correlation coefficient larger than 0.999 and with a detection limit of 4.0 μM H2O2 (S/N = 3). The relative standard deviation for detecting 1.80 × 10−4 M H2O2 (N = 8) is 2.1% with an average response of 0.64 μA. The significant diversity of electrocatalytic activity of the CNFs toward the oxidation of hydrogen peroxide may result from the difference of morphologies, textural properties, and crystalline structures.  相似文献   

6.
Hemoglobin (Hb) and myoglobin (Mb) were immobilized at the didodecyldimethylammonium bromide (DDAB)-modified powder microelectrode (PME) to fabricate Hb-DDAB-PME and Mb-DDAB-PME. Direct electrochemistry of Hb and Mb were achieved on the DDAB-modified PME. The formal potential was −0.224 V for Hb and −0.212 V for Mb (vs. SCE). The apparent surface concentration of Hb and Mb at the electrode surface was 2.83 × 10−8 and 9.94 × 10−8 mol cm−2. The Hb-DDAB-PME and Mb-DDAB-PME were successfully applied for measurement of NO in vitro. The anodic current peaks for NO oxidation at +0.7 V and the cathodic current peaks for NO reduction at −0.85 V on the CV curves were obtained on the modified electrodes. For detection of NO at +0.7 V, the sensitivity is 3.31 mA μM−1 cm−2 for Hb-DDAB-PME and 0.6 mA μM−1 cm−2 for Mb-DDAB-PME. The detection limit is 5 nM for Hb-DDAB-PME and 9 nM for Mb-DDAB-PME. The linear response range is 9-100 and 28-330 nM for Hb- and Mb-modified PME, respectively. For the electrochemical detection of NO at −0.85 V by using Hb-DDAB-PME, the detection sensitivity is 39.56 μA μM−1 cm−2; the detection limit is as low as 0.2 μM; and the linear response range is 1.90-28.08 μM.  相似文献   

7.
In-channel indirect amperometric detection mode for microchip capillary electrophoresis with positive separation electric field is successfully applied to some heavy metal ions. The influences of separation voltage, detection potential, the concentration and pH value of running buffer on the response of the detector have been investigated. An optimized condition of 1200 V separation voltage, −0.1 V detection potential, 20 mM (pH 4.46) running buffer of 2-(N-morpholino)ethanesulfonic acid (MES) + l-histidine (l-His) was selected. The results clearly showed that Pb2+, Cd2+, and Cu2+ were efficiently separated within 80 s in a 3.7 cm long native separation PDMS/PDMS channel and successfully detected at a single carbon fibre electrode. The theoretical plate numbers of Pb2+, Cd2+, and Cu2+ were 1.2 × 105, 2.5 × 105, and 1.9 × 105 m−1, respectively. The detection limits for Pb2+, Cd2+, and Cu2+ were 1.3, 3.3 and 7.4 μM (S/N = 3).  相似文献   

8.
The construction of a colloidal gold-cysteamine-carbon paste electrode, Aucoll-Cyst-CPE, for the electrochemical determination of homocysteine is reported. The improved voltammetric behaviour of homocysteine at Aucoll-Cyst-CPE with respect to that observed at a gold disk electrode is attributed to an enhanced electron transfer kinetics as a consequence of the array distribution of gold nanoparticles immobilized onto the Cyst SAM. Cyclic voltammtery of homocysteine showed an adsorption-controlled current for scan rates between 500 and 5000 mV s−1. The hydrodynamic voltammogram constructed for homocysteine allowed the selection of a potential value of +600 mV, where the background current is negligible, for the amperometric detection of the analyte at the Aucoll-Cyst-CPE. Using a flow rate of 0.8 ml min−1, the R.S.D. value for ip after 25 repetitive injections of homocysteine was of 4.3%, and one single electrode could be used for more than 15 days without any treatment or regeneration procedure of the modified electrode surface. An HPLC method for the separation and quantification of homocysteine and related thiols, using amperometric detection at the modified electrode has been developed. A mobile phase consisting of 2:98% (v/v) acetonitrile:0.05 mol l−1 buffer solution of pH 2.0, and a detection potential of +0.80 V were selected. Separation with baseline resolution and retention times of 3.00, 3.60, 4.52, 5.71 and 7.79 min were obtained for cysteine, homocysteine, glutathion, penicillamine and N-acetyl-cysteine, respectively. Calibration graphs were constructed for all the separated compounds. Detection limits ranged between 20 nM for cysteine and 120 nM for penilcillamine, with a value for homocysteine of 30 nM. These values compare advantageously with those achieved with previously reported HPLC methods using electrochemical, UV, fluorescence and MS detection modes. The developed method was applied to the determination of cysteine and homocysteine serum samples with good results.  相似文献   

9.
Highly boron-doped diamond (BDD) electrode, have been examined for simultaneous detection of purine and pyrimidine bases in mild acidic media by using HPLC with amperometric detection. Cyclic voltammetry at as-deposited (AD) and anodically oxidized (AO) BDD were used to study the electrochemistry and to optimize the condition for HPLC applications. At AO BDD electrode, due to its higher overpotential of oxygen evolution reaction, well-defined anodic peaks were observed for the oxidation of purine and pyrimidine bases in acid medium, whereas at AD BDD the oxidation peak of thymine was overlapped with the anodic current of oxygen evolution. The chromatograms of adenine, guanine, cytosine, thymine and 5-methylcytosine mixture were well resolved by using a silica-based column and a solution of 5% acetonitrile in 100 mM ammonium acetate buffer (pH 4.25) as the mobile phase. The detection was carried out at AO BDD electrode at an applied potential of 1.6 V versus Ag/AgCl. Linear calibration curves were obtained within the concentration range from 0.1 to 10 μM with the limits of detection (S/N = 3) ranging from 26.3 to 162.1 nM, resulting in an order of magnitude higher sensitivities than those at conventional electrodes. HPLC analysis with diamond amperometric detector was successfully applied for determination of 5-methylcytosine in real DNA samples with high reproducibility. No deactivation of the electrode was found during cyclic voltammetric and HPLC measurements, indicating the high stability for analysis of biological samples.  相似文献   

10.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

11.
Fabrication of an amperometric cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto conducting polypyrrole (PPY) films using electrochemical entrapment technique is described. Electrochemical polymerization was carried out using a two-electrode cell configuration at 0.8 V. Characterization of resulting amperometric biosensor for the estimation of cholesterol has been experimentally determined in terms of linear response range, optimum pH, applied potential, temperature, and shelf-life. These PPY/ChEt/ChOx electrodes can be used for cholesterol ester estimation from 1 to 8 mM and have shelf-life of about 4 weeks at 4 °C during which about 15 estimations of cholesterol ester could be made. The sensitivity of PPY/ChEt/ChOx electrode has been found to be 0.15 μA/mM and the apparent Km value for this electrode is 9.8 mM. Conductivity of the polymer films found to be about 3×10−3 S/cm.  相似文献   

12.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   

13.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

14.
A new, simple and effective amperometric acetylcholinesterase biosensor was developed using screen-printed carbon electrodes modified with carbon nanotubes (MWCNTs)–7,7,8,8-tetracyanoquinodimethane (TCNQ). The design of the biosensor was based on the supramolecular arrangement resulted from the interaction of MWCNTs and TCNQ. This arrangement was confirmed by spectroscopic and electrochemical techniques. Two different supramolecular arrangements were proposed based on different MWCNTs:TCNQ ratios. The synergistic effect of MWCNTs and TCNQ was, for the first time, exploited for detection of thiocholine at low potential with high sensitivity. The biosensor developed by immobilization of acetylcholinesterase (AChE) in sol–gel allowed the detection of two reference AChE inhibitors, paraoxon-methyl and chlorpyrifos with detection limits of 30 pM (7 ppt) and 0.4 nM (0.1 ppb), respectively. Efficient enzyme reactivation was obtained by using obidoxime.  相似文献   

15.
A simple technique is described for constructing a glucose sensor by the entrapment of glucose oxidase (GOD) in a poly (aniline-co-o-anisidine-co-o-toluidine) [P(A-co-o-A-co-o-T)] thin films, which were electrochemically deposited on a platinum plate in phosphate and acetate buffer. The maximum current response was observed for the said electrodes at pH 5.5 and potential 0.60 V (versus Ag/AgCl). The phosphate buffer gives high stability and fast response as compared to acetate buffer in amperometric measurements.  相似文献   

16.
An amperometric artemisinin (ARN) sensor based on the supramolecular recognition of glycosylated metalloporphyrin, which is included in the Au-nanoparticles-chitosan film coated on the glass carbon electrodes, was developed. For the improvement of the selectivity of artemisinin detection, 5,10,15,20-tetrakis[2-(2,3,4,6-tetraacetyl-β-d-glucopyranosyl)-1-O-phenyl]porphyrin (T(o-glu)PPH) metal complex [FeT(o-glu)PPCl] was synthesized and employed as a ARN-sensitive and -selective material in the amperometric sensors. The proposed [FeT(o-glu)PPCl]/Au-nanoparticles modified electrodes showed excellent selectivity and sensitivity toward ARN with respect to a number of interferents and exhibited stable current response, which can be attributed to the coordination of ARN with the [FeT(o-glu)PPCl] in the electrodes. The calibration graph obtained with the proposed sensor was linear over the range of 1.8 × 10−7-1.7 × 10−9 mol l−1, with a detection limit of 1.7 × 10−9 mol l−1 for ARN. Significant advantages of the proposed procedure over the conventional reductive electrochemical methods are the selective detection and the relatively low applied potential requirement of the ARN-sensor. The prepared sensor is applied for the determination of ARN in plant samples and the results agreed with the values obtained by the pharmacopoeia method.  相似文献   

17.
The screen-printed four-electrode system was used as the amperometric transducer for determination of phenols and pesticides using immobilised tyrosinase, peroxidase, acetylcholinesterase and butyrylcholinesterase. Acetylthiocholine chloride was chosen as substrate for cholinesterases to measure inhibition by pesticides, hydrogen peroxide served as co-substrate for peroxidase to measure phenols. The compatibility of hydrolases and oxidoreductases working in the same array was studied. The detection of p-cresol, catechol and phenol as well as of pesticides including carbaryl, heptenophos and fenitrothion was carried out in flow-through and steady state arrangements. In addition, the effects of heavy metals (Cu2+, Cd2+, Fe3+), fluoride (NaF), benzene and dimethylsulphoxide on cholinesterase activities were evaluated. It was demonstrated that electrodes modified with hydrolases and oxidoreductases can function in the same array.The achieved R.S.D. values obtained for the flow system were below 4% for the same sensor and less than 10% within a group of five sensors. For the steady state system, R.S.D.s were approximately twice higher. One assay was completed in less than 6 min. The limit of detection for catechol using tyrosinase was equal to 0.35 and 1.7 μM in the flow and steady state systems, respectively. On the contrary, lower limits of detection for pesticides were achieved in the steady state system—carbaryl 26 nM, heptenophos 14 nM and fenitrothion 0.58 μM.  相似文献   

18.
A simple approach is proposed for the synthesis of cobalt hexacyanoferrate nanoparticles (CoNPs) with uniform shape and size controlled by ethylene diamine tetraacetic acid (EDTA) as a stabilizer. A sensitive amperometric biosensor for insulin has been prepared using glassy carbon electrodes by solubilization of carbon nanotubes (CNTs) in chitosan (CHIT) together with CoNPs synthesized by the new methodology. The CoNP-CNT-CHIT organic–inorganic system exerts a synergistic effect, resulting in the remarkably enhanced insulin currents owing to the superior electron-transfer ability of CNTs and the excellent reversible redox centers of CoNPs. High-resolution transmission electron microscopy (HRTEM) was used to provide closer inspection of the CoNPs. The effects of alkali metal cations and the concentrations of CNTs and CoNPs on the voltammetric behavior of the film-modified electrode were also investigated. In pH 6.98 phosphate buffer (PB) at +0.7 V (vs. SCE) the insulin biosensor exhibits a linear response range of 0.1–3 μM with a correlation coefficient of 0.98, and the detection limit (S/N=3) is determined to be 40 nM, the stability of the biosensor was tested and found satisfactory. There is great promise for in vivo measurements of this important hormone.  相似文献   

19.
In this work, a method based on capillary electrophoresis with amperometric detection and far infrared-assisted extraction has been developed for the determination of rutin, gentisic acid, and quercetin in the leaves of Lycium barbarum Linn. The effects of detection potential, irradiation time, and the voltage applied on the infrared generator were investigated to acquire the optimum analysis conditions. The detection electrode was a 300-μm-diameter carbon disc electrode at a detection potential of +0.90 V. The three analytes could be well separated within 12 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 50 mM borate buffer (pH 9.2). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) of 0.31, 0.48, and 0.78 μM for rutin, gentisic acid, and quercetin, respectively. The proposed method has been applied to determine the three bioactive constituents in real plant samples.  相似文献   

20.
The preparation and performance of a disposable amperometric magneto-immunosensor, involving the use of a selective capture antibody immobilized on the surface of protein G-functionalized magnetic beads (ProtG-MBs) and screen-printed carbon electrodes (SPCEs), for the specific detection and quantification of tetracyclines (TCs) residues in milk is reported. A direct competitive immunoassay using a tracer with horseradish peroxidase (HRP) for the enzymatic labeling was performed. The amperometric response measured at −0.2 V vs. the silver pseudo-reference electrode of the SPCE upon the addition of H2O2 in the presence of hydroquinone (HQ) as redox mediator was used as transduction signal. The developed methodology showed very low limits of detection (in the low ppb level) for 4 tetracycline antibiotics tested in untreated milk samples, and a good selectivity against other antibiotic residues frequently detected in milk and dairy products. The usefulness of the magneto-immunosensor was demonstrated by analyzing UHT whole milk samples spiked with 44 ng mL−1 tetracycline (TC) as well as a reference milk containing a certified oxytetracycline (OTC) content. These features, together with the short analysis time (30 min), the simplicity, and easy automation and miniaturization of the required instrumentation make the developed methodology a promising alternative in the development of devices for on-site analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号