首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since some metal-organic cages (MOCs) have been synthesized in past several years, the applications of MOCs such as drug delivery, molecular recognition, separation, catalysis, and gas storage, etc. have been witnessed with a significant increase. However, to the best of our knowledge, so far no one has used MOCs as chiral stationary phase to separate chiral compounds in CEC. In this study, three MOCs were developed as the stationary phase for CEC separation of enantiomers. The MOCs coated capillary column showed good chiral recognition ability for some chiral compounds, including amine, alcohols, ketone, etc. The influence of buffer concentration, applied voltage, pH of buffer solution on the chiral separations was also investigated. The RSDs of run-to-run, day-to-day, and column-to-column for retention time were 2.1-4.67%, 1.2-4.36%, and 3.62-6.43%, respectively. This work reveals that the chiral MOCs material is feasible for the enantioseparation in CEC.  相似文献   

2.
Lin B  Shi ZG  Zhang HJ  Ng SC  Feng YQ 《Electrophoresis》2006,27(15):3057-3065
Perphenylcarbamoylated beta-cyclodextrin bonded-silica particles (5 microm) were packed into 75-mum fused-silica capillaries, and used for the enantiomer separation of neutral and basic solutes by pressure-assisted capillary electrochromatography. Triethylammonium acetate and phosphate buffer were employed as the BGEs. A cathodic EOF was observed with these two BGEs. Seven chiral analytes were successfully resolved into their enantiomers under optimized conditions, and five of them could be baseline-separated within 12 min due to their high electrophoretic mobility. Better results were achieved with phosphate buffer as the BGE. The effects of organic content and pH on the enantioseparation were also investigated.  相似文献   

3.
Summary A chiral capillary electrochromatographic (CEC) method for determination of the enantiomeric purity of either enantiomer of metoprolol has been validated. High resolution and efficiency separations (R s =2.5 and 80000 plates m−1, respectively) were achieved by use of a teicoplanin chiral stationary phase in the polar organic mode. Method validation showed that detection linearity, robustness, accuracy, and repeatability were adequate. The method was also shown to be sufficiently sensitive for the determination of a minor enantiomer; the limit of quantitation (LOQ) was determined to be 0.09% of the peak area of the enantiomer under investigation. A similar commercial column was subsequently evaluated by use of the validated method and found to yield results for metoprolol comparable with those obtained on the homepacked columns. Acceptable separations on this commercial column were also obtained for other β-blocking drugs; those for alprenolol were particularly noteworthy (R S =3.8 and 265000 plates m−1).  相似文献   

4.
Separation of hydroxy acid enantiomers was achieved by using capillary electrochromatography (CEC) employing a chiral stationary phase (CSP) based on MDL 63,246 (Hepta-Tyr), a macrocyclic antibiotic of the teicoplanin family. The chiral selector was chemically bonded to 5 num diol-modified silica particles and the CSP mixed with amino silica (3:1 w/w) was packed into a 75 num ID fused-silica capillary. The CEC experiments were carried out by using an aqueous reversed-phase mode for the enantiomeric resolution of hydroxy acid compounds. Good enantioresolution was achieved for mandelic acid (MA), m-hydroxymandelic acid (m-OH-MA), p-OH-MA, and 3-hydroxy-4-methoxymandelic acid (3-OH-4-MeO-MA). The CEC system was less enantioselective towards 2-phenyllactic acid (2-PhL) and 3-PhL while mandelic acid methyl ester (MA-Et-Est) enantiomers were not resolved. Several experimental parameters, such as organic solvent type and concentration, buffer pH, capillary temperature, on enantioresolution factor, retention time, and retention factor were studied.  相似文献   

5.
A monolithic molecularly imprinted polymer (MIP) column was prepared as the stationary phase for the capillary electrochromatographic (CEC) separation of a group of structurally related compounds including dopamine (DA), (±)-epinephrine (EP), (-)-isoproterenol (ISO), (±)-norepinephrine (NE), (±)-octopamine (OCT), and (±)-synephrine (SYN). Here, (-)-NE was used as the template. Either methacrylic acid (MAA) or itaconic acid (IA) together with a mixture of ethylene glycol dimethacrylate (EDMA) and α,α'-azobis(isobutyronitrile) (AIBN) in N,N-dimethylformamide (DMF) was introduced into a pre-treated, silanised, fused-silica capillary by a thermal non-covalent polymerisation procedure. Optimised conditions for the polymerisation reaction were assessed by the separation efficiency of the template. Both the template/monomer/cross linker molar ratio and the compositions of the functional monomer, cross-linker, and porogen affected polymerisation. The optimum in situ polymerisation reaction was performed at 65 °C for 17 min. By varying CEC parameters like eluent composition and pH, we observed that the addition of SDS to the eluent clearly improved the CEC separations. With a mobile phase of citrate buffer (10 mM, pH 3)/SDS (40 mM)/acetonitrile (2/2/1, v/v/v) solution and an applied voltage of 10 kV, the six related structures of the template and their enantiomeric mixtures were satisfactorily separated at 30 °C.  相似文献   

6.
In completion of an earlier defined generic chiral screening approach, a generic separation strategy for basic, bifunctional, and neutral compounds was proposed and evaluated. This strategy adds to a previously defined strategy for acidic compounds. The screening experiment of the actual strategy used a mobile phase of 5 mM phosphate buffer pH 11.5/ACN (30/70 v/v), a temperature of 25 degrees C, and a voltage of 15 kV. The selected chiral stationary phases were Chiralpak AD-RH, Chiralcel OD-RH, Chiralcel OJ-RH, and Chiralpak AS-RH, all based on polysaccharide selectors. It was seen that 31 out of 48 test compounds were partially or baseline-resolved under screening conditions. After execution of the optimization steps of the strategy, this number increased to 41, with a total of 21 baseline-separated compounds. Combined with the results obtained from the acidic test set examined in the earlier defined strategy, of all tested compounds 82.5% showed enantioselectivity and 49.2% could be baseline-separated.  相似文献   

7.
Summary The capillary electrochromatographic (CEC) separation of a range of pharmaceutical bases was investigated on a commercially available silica stationary phase using aqueous mobile phases. The effects of mobile phase composition, buffer pH, applied voltage, and buffer anion on the retention behaviour of these bases were studied. Promising chromatography was obtained at pH 7.8 but was later found to be irreproducible. However, successful and reproducible chromatography of the bases was achieved at pH 2.3. We have previously demonstrated that the addition of mobile phase additives such as TEA-phosphate at low pH values has resulted in excellent CEC analysis of bases on reversed-phase packing materials. The same approach was applied to the analysis of bases on the silica phase in order to improve peak shape. Excellent chromatography was obtained for the analysis of strong pharmaceutical bases such as benzylamine, nortriptyline and diphenhydramine. The experimental investigations have shown that the CEC separation of a range of pharmaceutical bases can routinely be achieved with excellent peak shapes and peak efficiencies as high as 320,000 plates m−1.  相似文献   

8.
Chen JL 《Talanta》2011,85(5):2330-2338
The chiral selector, chitosan (CS), was attached to the silanized capillary via a silane coupling agent, (3-glycidyloxypropyl)trimethoxysilane (GTS), to form the GTS-CS capillary, and results for this capillary were compared with those of a previous study on the copolymerization of CS with methacrylamide (MAA) (forming the MAA-CS capillary). The GTS-CS capillary did not exhibit enantioselectivity for d/l-tryptophan, whereas the GTS-BSA capillary, which was prepared by replacement of CS with bovine serum albumin (BSA), succeeded in the chiral separation with an Rs = 2.4 in Tris buffer (50 mM, pH 8.5). To increase CS attachment, the CS units were crosslinked by succinic acid, and the resulting GTS-CS-s capillary phase improved the resolution to 1.9. Alternatively, the SiH-CS-s capillary was constructed by CS attachment on the silicon hydride phase via stepwise silanization and hydrosilation reactions and crosslinking by succinic acid, but this approach could only achieve a resolution of 1.4 in Tris buffer (50 mM, pH 9.5). Although the GTS-CS-s and SiH-CS-s capillaries were still inferior to the MAA-CS capillary (Rs = 3.8), the enantioselectivities of the three capillaries were all in the range of 1.4-1.6. For the (±)-catechin sample, the plate heights of the GTS-CS-s and SiH-CS-s capillaries conditioned in pH 8.5 Tris buffer with 60% MeOH modifier were 0.9 cm ((−)-catechin) and 6.0 cm ((+)-catechin)) and 2.9 cm (−) and 3.2 cm (+), respectively, and these heights were comparable to the MAA-CS capillary (2.5 cm (−), 6.0 cm (+)) in pH 6.6 phosphate buffer with 80% MeOH. Finally, a racemate of ibuprofen, a weakly acidic anti-inflammatory drug, was successfully baseline resolved by the GTS-CS-s and SiH-CS-s capillaries in the borate buffers, which were 30 mM at pH 7.5 and 10 mM at pH 8.0, respectively.  相似文献   

9.
Summary Capillary electrochromatography (CEC) is classed as a hybrid technique between CE and HPLC and it combines the advantages of both these techniques. However, in some cases the disadvantages are also brought to light and some of these are difficult to resolve. For example the analysis of basic compounds using CEC. The problems of tailing peaks during HPLC analysis of basic compounds was resolved by end capping the residual silanol groups, but in CEC these are the groups that generate the electroosmotic flow. The analysis of basic compounds is crucial within the pharmaceutical industry where a high percentage of the drug actives are basic. Specially designed Continuous Beds stationary phases (CB) can mean that each application can have a specific stationary phase. In order to overcome the problem associated with the analysis of basic compounds using electrochromatography, we have designed a CB stationary phase with a positive charge, which could be operated using negative voltage. The resulting chromatography showed almost gaussian peaks for bases like nortriptyline which tail significantly using stationary phase typically used in CEC.  相似文献   

10.
Enhanced chiral separation performance has been observed for ketoprofen enantiomers in capillary electrochromatography (CEC) with an open-tubular (OT) column prepared with a specific molecule imprinted polymer (MIP) on the innerwall of 50mum ID capillary. The column was prepared by in situ thermal polymerization inside the pretreated and silanized fused silica capillary. A specific diluted monomer mixture composed of S-ketoprofen, methacrylic acid (MAA, functional monomer), ethylene glycol dimethacrylate (EDMA, cross-linker), and 4-styrenesulfonic acid (4-SSA) dissolved in 9/1 (v/v) acetonitrile/2-propanol was used to fabricate the OT-MIP layer. 4-SSA was added to form a MIP layer capable of stable and strong electro-osmotic flow (EOF) over the pH range of this study securing CEC elution of ketoprofen having partial negative charge near the optimized pH. Various parameters such as buffer pH, organic modifier composition, salt concentration, and applied potential have been optimized for CEC chiral separation of ketoprofen enantiomers. Very good separation selectivity and efficiency were observed, thus the chromatographic resolution of ketoprofen enantiomers was as high as 10.5, and the number of theoretical plates of R-ketoprofen, 156,000/m (40,000/m for S-ketoprofen), which proves that the OT-MIP-CEC type approach is a promising strategy in MIP study.  相似文献   

11.
The paper describes the enhanced separation of o-, m-, p-dihydroxybenzene by capillary electrochromatography (CEC) using gold nanoparticles (AuNPs) as stationary phase. The effect of the AuNPs concentration upon separation was investigated. The experimental parameters, including separation voltage, pH, and concentration of running buffer, were optimized. Under the optimum conditions, a good resolution of three dihydroxybenzene isomers was obtained within 15 min in a 50 cm effective length capillary modified with 0.02 nmol/L AuNPs at a separation voltage of 16 kV in a 50 mmol/L acetate buffer (pH 5.0). The linear ranges were from 10(-6) to 10(-4) mol/L and the detection limits were as low as 10(-7) mol/L. This method was successfully used to analysis two kinds of hair coloring agent sample with recoveries in the range of 90-105% and relative standard deviations (RSD) less than 5.0%.  相似文献   

12.
Porous zirconia monolith (ZM) modified with cellulose 3,5-dimethylphenylcarbamate (CDMPC) was used as chiral stationary phase to separate basic chiral compounds in capillary electrochromatography. The electroosmotic flow behavior of bare and CDMPC-modified zirconia monolithic (CDMPC-ZM) column was studied in ACN/phosphate buffer eluents of pH ranging from 2 to 12. The CDMPC-ZM column was evaluated by investigating the influences of pH, the type and composition of organic modifier of the eluent on enantioseparation. CEC separations at pH 9 provided the best resolutions for the analytes studied, which are better than those observed on CDMPC-modified silica monolithic columns under similar chromatographic conditions. No appreciable decline in retention and resolution factors after over 200 injections, and run-to-run and day-to-day repeatabilities of the column of less than 3% indicate the stability of the zirconia monolithic column in basic media.  相似文献   

13.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

14.
The enantiomeric separation of a novel series of twenty-eight racemic mixtures of citalopram analogues was performed by high performance liquid chromatography (HPLC). Due to the effectiveness of citalopram as an antidepressant drug, the development of new compounds based on its chemical structure is interesting, and their enantiomeric separation is needed to allow further pharmacokinetic studies. Several bonded cyclodextrin (both native and derivatized) and macrocyclic glycopeptide based chiral stationary phases (CSPs) were evaluated for their ability to separate this set of compounds via HPLC. Polar ionic, polar organic, and reversed phase modes were tested. Twenty-five of the racemic mixtures were separated with resolutions and enantiomeric selectivities up to 2.9 and 1.33, respectively. A total of eighteen baseline separations were achieved, while seven compounds were partially separated. Vancomycin based columns operated in the polar ionic mode resulted in the greatest number of separations. Lastly, the chromatographic behaviors of similar compounds were compared based on their chemical structure and also on the chiral selectors used.  相似文献   

15.
Qin F  Liu Y  Chen X  Kong L  Zou H 《Electrophoresis》2005,26(20):3921-3929
A chemically bonded cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase (CSP) was prepared by a radical polymerization reaction. The prepared CSP was packed into fused-silica capillaries with inner diameter of 75 microm to perform enantiomer separations in CEC. The electrochromatographic behavior of the CSP was investigated. On the prepared CSP, high EOF could be generated under acidic mobile phases, which represented an advantage for the separation of acidic enantiomers. Several neutral, acidic, and basic enantiomers were resolved on the prepared CSP under aqueous mobile phases. The column efficiencies were between 20,000 and 100,000 plates/m, which were much higher than those of HPLC. In addition, it was observed that the separation of some enantiomers benefited from the adoption of THF as mobile phase modifier.  相似文献   

16.
By an on-column sol-gel process, a chiral monolithic stationary phase was prepared by the fusion of permethyl-beta-cyclodextrin-silica (Chira-Dex-silica) particles and by linking them to the internal capillary wall. The resulting monolith is stable toward voltage (30 kV) and pressure (300 bar) and possesses a high efficiency (up to 100,000 theoretical plates per meter). Efficient enantiomeric separation of various chiral compounds by pressure-supported capillary electrochromatography (CEC) was achieved. When comparing this method to capillary liquid chromatography (LC) employing the same column in an unified equipment, CEC shows a twofold higher column efficiency at comparable elution times and hence better resolution factors.  相似文献   

17.
The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self‐polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine‐coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused‐silica capillary, the direction and magnitude of the electro‐osmotic flow of the as‐prepared polydopamine‐coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine‐coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine‐coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run‐to‐run, day‐to‐day, and column‐to‐column were less than 3.5%. In addition, the feasibility of the polydopamine‐coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk.  相似文献   

18.
A rapid capillary electrochromatography (CEC) method was developed to separate five structurally related steroid compounds from the production line of steroid hormones. The separation was performed on a Hypersil C8 MOS and Unimicro C18 stationary phases using acetonitrile (ACN), methanol (MeOH), and tetrahydrofuran (THF) as organic modifiers and tris(hydroxymethyl)aminomethane (Tris) as buffer additive. The Hypersil C8 MOS stationary phase performed best together with ACN as organic modifier and Tris buffer. The method was extensively tested for ruggedness with respect to sensitivity to temperature, ACN composition, pH change, concentration of Tris buffer, injected plug length, and run‐to‐run and day‐to‐day repeatability. The minimal detectable concentration and amount were investigated for quantification purposes. The developed CEC method was shown to be fast, rugged, and well suited for quantification of the steroids under study.  相似文献   

19.
陈巧梅  柳青  申琳  薛芸  王彦  阎超 《色谱》2018,36(4):388-394
采用改良Stöber法制备420 nm亚微米单分散二氧化硅微球,采用C18硅烷化修饰后装填成毛细管色谱柱。采用该色谱柱,在加压毛细管电色谱平台上成功地实现了3对手性三唑类农药烯效唑、烯唑醇和丙环唑的同时拆分和分离。考察了各因素对手性分离效果的影响,优化后的色谱条件为:流动相为乙腈-20 mmol/L磷酸盐缓冲液(pH=6.8)(45:55,v/v),其中缓冲液中含20 mmol/L羟丙基-γ-环糊精(HP-γ-CD);泵流速为0.04 mL/min;施加电压-9.4 kV;检测波长220 nm。在上述条件下,烯效唑、烯唑醇和丙环唑3种对映体同时得到拆分和分离,相邻两峰之间的分离度依次为4.20、12.9、4.41、4.09、1.70,分离时间仅为12 min,柱效最高达到310000 plates/m。该研究为手性三唑类农药的同时分离提供了新的分离分析思路。  相似文献   

20.
In this work, open-tubular capillary electrochromatography (OT-CEC) method with bare gold nanoparticles (GNPs)-based stationary phase has been developed and applied for separation of tryptic peptide fragments of native and glycated proteins, bovine serum albumin (BSA), and human transferrin (HTF). The GNPs-based stationary phase was prepared by immobilization of bare GNPs, freshly reduced from tetrachloroaurate(III) ions by citrate reduction, on the sol-gel pretreated inner wall of the fused silica capillary. The separation efficiency, peak capacity, and peptide recovery of this open-tubular capillary column were investigated by varying the experimental parameters such as type and concentration of the buffering constituent and pH of the background electrolyte (BGE), temperature, and separation voltage. The best separations of the above tryptic peptides were achieved in the BGE composed of aqueous 100 mmol/L sodium phosphate buffer, pH 2.5, at separation voltage 10 kV per 47-cm long, 50 μm inside diameter capillary thermostated at 25°C. OT-CEC with bare GNPs stationary phase is shown to be a suitable technique for separation of complex peptide mixtures arising from tryptic digestion of native and glycated BSA and HTF, and for investigation of glycation (nonenzymatic glycosylation) of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号