共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the quenching of the fluorescence of CdSe quantum dots (QDs) by spironolactone, a simple, rapid and specific method for spironolactone determination was proposed. In the optimum conditions, spironolactone concentration versus quantum dot fluorescence gave a linear response with an excellent 0.997 correlation coefficient, between 2.5 and 700 mg/mL (6.0-1680 μmol/L) and the limit of detection (S/N = 3) was 0.2 μg/mL (0.48 μmol/L). The contents of spironolactone in pharmaceutical tablets were determined by the proposed method and the results agreed with the claimed values. The possible mechanism for the reaction was also discussed. 相似文献
2.
Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination 总被引:2,自引:0,他引:2
Liu M Xu L Cheng W Zeng Y Yan Z 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,70(5):1198-1202
A novel, sensitive and convenient determine technology based on the quenching of the fluorescence intensity of functionalized CdS quantum dots by sulfadiazine was proposed. Luminescent CdS semiconductor quantum dots (QDs) modified by thioglycollic acid (TGA) were synthesized with the microwave method. The modified CdS QDs are water-soluble, stable and highly luminescent. The possible mechanism for the reaction was also discussed. When sulfadiazine was added into the CdS QDs colloid solution, the surface of CdS QDs generates the electrostatic interaction in aqueous medium, which induces the quenching of fluorescence emission at 489 nm. Under optimum condition, the fluorescence intensity versus sulfadiazine concentration gave a linear response according Stern-Volmer equation with an excellent 0.9981 correlation coefficient. The linearity range of the calibration curve was 1.2 x 10(-5) to 2.13 x 10(-3) mol L(-1). The limit of detection (3delta) is 8.0 micromol L(-1). The relative standard deviation for five determinations of 0.13 x 10(-3)mol L(-1) sulfadiazine is 1.4%. The concentrations of sulfadiazine injections were determined by the proposed method with a satisfactory result. 相似文献
3.
Emma Sotelo-Gonzalez María T. Fernandez-ArgüellesJose M. Costa-Fernandez Alfredo Sanz-Medel 《Analytica chimica acta》2012
Quantum dot (QD) nanoparticles (NPs) are increasingly used as highly valuable fluorescent biomarkers and as sensitive (bio)chemical probes. Interestingly, if certain metal impurities are incorporated during the NPs synthesis, phosphorescent QDs with analytical potential can be obtained. 相似文献
4.
Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions 总被引:1,自引:0,他引:1
Jin WJ Fernandez-Arguelles MT Costa-Fernandez JM Pereiro R Sanz-Medel A 《Chemical communications (Cambridge, England)》2005,(7):883-885
Water-soluble luminescent CdSe quantum dots surface-modified with 2-mercaptoethane sulfonate were synthesized for the selective determination of free cyanide in aqueous solution with high sensitivity (detection limit of 1.1 x 10(-6) M), via analyte-induced changes in their photoluminescence after photoactivation. 相似文献
5.
A novel fluorescence quenching method for the determination of cationic surfactants (CS), specifically cetyltrimethylammonium
bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and cetylpyridinium chloride (CPC), has been developed using water-soluble
luminescent CdTe quantum dots (QDs) modified with thioglycolic acid (TGA). The possible interference from heavy and transition
metals (HTM) has been efficiently eliminated through simple sample treatment with mercapto cotton made in-house. Under optimum
conditions, the extent of fluorescence quenching of CdTe QDs is linearly proportional to the concentration of CS from 2.0 × 10−7 to 7.0 × 10−6 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. The relative standard deviation for 1.0 × 10−6 mol L−1 CTAB is 2.5% (n = 6). The proposed method exhibits high sensitivity and selectivity and furthermore avoided the use of toxic organic solvents
and tedious solvent extraction procedures. It has been applied to the determination of trace CS in natural river water and
commodity samples with satisfactory results.
Potential interference from heavy and transition metals is eliminated during photoluminescence detection of CS through simple
sample pre-treatment with mercapto cotton 相似文献
6.
In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10 mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (Km =2.0745 mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (Km =0.549 mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (Km =0.1698 mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications. 相似文献
7.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. 相似文献
8.
Luminescent and stable CdSe/ZnS core/shell quantum dots (QDs) capped with L-carnitine are firstly prepared for optical determination
of mercury ions in ethanol. LC capped QDs have desirable dispersibility, uniformity and good fluorescence properties and were
characterized by fluorescence spectroscopy, transmission electron microscopy and infrared spectra. The functionalized QDs
turned out to exhibit excellent long-term stability. The modified QDs allowed a highly sensitive determination of mercury
ions via analyte-induced changes in the photoluminescence of them. A detection limit of 1.8 × 10−7 M (36.1 μg · L−1) of mercury ions was obtained, while the interfering effect of other ions (including alkali metal ions, alkali earth metal
ions, Ni2+, Zn2+, Fe2+, Ag+ and anions such as NO3
−, SO4
2−, CO3
2− and halogen ions) was negligible even at a very high concentration. The possible mechanism is discussed.
Correspondence: Haibing Li, Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry,
Central China Normal University, Wuhan 430079, P.R. China; Zhinong Gao, College of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, P.R. China 相似文献
9.
CdSe/CdS量子点荧光猝灭法测定芹黄素的研究 总被引:2,自引:0,他引:2
以巯基乙酸为稳定剂,在水溶液中合成了具有特殊光学性质的水溶性CdSe/CdS量子点。以该量子点为荧光探针,基于荧光猝灭法对芹黄素进行了定量检测。考察了缓冲体系、反应时间、量子点浓度等多种因素的影响。实验结果表明,在0.001 mol/L、pH为6.80的KH2PO4-Na2HPO4缓冲液中,当量子点浓度为1.2×10^-4mol/L、反应时间为20 min时,该方法的线性范围为0.16-27.02μg/mL,其线性回归方程为F0/F=0.99665+0.11067ρ(μg/mL),相关系数r=0.998,检出限为0.13μg/mL,并用于合成样品的分析。 相似文献
10.
合成了巯基乙酸(TGA)保护的水溶性发光CdTe量子点,并考察了此探针在阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)中的发光行为。根据观察到的发光猝灭效应,建立了一种简单的测定阳离子表面活性剂的方法。考察了CdTe量子点的浓度、体系酸度、反应时间及共存物质等对测定的影响。在最佳条件下,CdTe量子点发光强度与CTMAB的浓度分别在6×10-7~9.0×10-6mol/L和1.2×10-5~3.8×10-5mol/L范围内分段成线性关系。该方法用于水样的阳离子表面活性剂的测定,回收率为97%~102%。 相似文献
11.
Eleni A. Sapountzi Sotirios S. Tragoulias Despina P. Kalogianni Penelope C. Ioannou Theodore K. Christopoulos 《Analytica chimica acta》2015
There is a growing interest in the development of biosensors in the form of simple lateral flow devices that enable visual detection of nucleic acid sequences while eliminating several steps required for pipetting, incubation and washing out the excess of reactants. In this work, we present the first dipstick-type nucleic acid biosensors based on quantum dots (QDs) as reporters. The biosensors enable sequence confirmation of the target DNA by hybridization and simple visual detection of the emitted fluorescence under a UV lamp. The ‘diagnostic’ membrane of the biosensor contains a test zone (TZ) and a control zone (CZ). The CZ always fluoresces in order to confirm the proper function of the biosensor. Fluorescence is emitted from the TZ, only when the specific nucleic acid sequence is present. We have developed two general types of QD-based nucleic acid biosensors, namely, Type I and Type II, in which the TZ consists of either immobilized streptavidin (Type I) or immobilized oligodeoxynucleotides (Type II). The control zone consists of immobilized biotinylated albumin. No purification steps are required prior to the application of the DNA sample on the strip. The QD-based nucleic acid biosensors performed accurately and reproducibly when applied to (a) the visual detection of PCR amplification products and (b) visual genotyping of single nucleotide polymorphisms (SNPs) in human genomic DNA from clinical samples. As low as 1.5 fmol of double-stranded DNA were clearly detected by naked eye and the dynamic range extended to 200 fmol. The %CV were estimated to be 4.3–8.2. 相似文献
12.
In the present work, CdSe/ZnS core-shell quantum dots were synthesized and conjugated with enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP). The complex of enzyme-conjugated QDs was used as QD-FRET-based probes to sense glucose. The QDs were used as an electron donor, whereas GOD and HRP were used as acceptors for the oxidation/reduction reactions involved in oxidizing glucose to gluconic acid. Electron transfer between the redox enzymes and the electrochemical reduction of H2O2 (or O2) occurred rapidly, resulting in an increase of the turnover rate of the electron exchange between the substrates (e.g. glucose, H2O2 and O2) and the enzymes (GOD, HRP), as well as between the QDs and the enzymes. The transfer of non-radiative energy from the QDs to the enzymes resulted in the fluorescence quenching of the QDs, corresponding to the increase in the concentration of glucose. The linear detection ranges of glucose concentrations were 0–5.0 g/l (R = 0.992) for the volume ratios of 10/5/5, 0.2–5.0 g/l (R = 0.985) for the volume ratios of 10/5/3 and 1.0–5.0 g/l (R = 0.982) for the volume ratios of 10/5/0. Temperature (29–37 °C), pH (6–10) and some ions (NH4+, NO3−, Na+, Cl−) had no interference effect on the glucose measurement. 相似文献
13.
Yan Jie Bao Jun Jun Li Yi Ting Wang Lei Yu Lei Lou Wei Ji Du Zi Qiang Zhu Hui Peng Jian Zhong Zhu 《中国化学快报》2011,22(7):843-846
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells. 相似文献
14.
《中国化学快报》2008,(2)
Water-soluble CdSe/ZnS quantum dots (QDs) were prepared via a simple sonochemical procedure using b-cyclodextrin (CD) as surface coating agent. The QDs displayed a sensitive emission enhancement for anthracene over other related polycyclic aromatic hydrocarbons, and the detection limit was around 1.6 10 8 mol/L. 相似文献
15.
Gui Zheng Zou 《中国化学快报》2009,20(3):356-357
Highly conjugated multiwalled carbon nanotube-quantum dot heterojunctions were synthesized by ethylene carbodiimide coupling procedure. The functional multiwalled carbon nanotube with carboxylic groups on sidewall could react with the amino group of L-cysteine capped CdSe quantum dots and then resulted in nanotube-quantum dot heterojunctions. Scanning electron microscopy was used to characterize the heterojunctions. 相似文献
16.
CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSxSe1-x quantum dots. 相似文献
17.
A study on hydrothermal synthesis of CdTe quantum dots, highly luminescent nanocrystals at a relatively lower temperature, via changing the concentration of the CdTe precursors, is described. The full width at half maximum ranged from 40 to 80 nm and quantum yield (QY) was detected to be 27.4% at room temperature. The as-prepared CdTe QDs were labeled with BSA for fluorescence probes without pretreatment. Conjunction experimental results suggested that the as-prepared CdTe QDs are suitable for the application of biotechnology. 相似文献
18.
Microchimica Acta - A novel method has been developed for methimazole analysis based on the quenching of fluorescence emission from CdSe quantum dots by methimazole. Under optimum conditions, the... 相似文献
19.
Mengke Han Jiangbo Zhao Joseph Mahandas Fabian Samuel Evans Sanam Mustafa Yinlan Ruan Steven Wiederman Heike Ebendorff-Heidepriem 《Electrophoresis》2021,42(11):1247-1254
Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2–35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (–0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20–30 μm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment. 相似文献
20.
CdSe/CdS quantum dots(QDs) functionalized by thiourea(TU) were synthesized and used as a fluorescent sensor for mercury ion detection.The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid(TGA).It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg~(2+).The quantitative detection of Hg~(2+) with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg~(2+) added in the range of1-300 μg L~(-1).A detection limit of 0.56 μg L~(-1) was achieved.The sensor showed superior selectivity for Hg~(2+) and was successfully applied to the determination of mercury in environmental samples with satisfactory results. 相似文献