首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

2.
An analytical method using an optical probe in a photoelectrochemical cell for the sensitive and selective determination of aqueous Hg2+ is presented. A previously synthesized Hg2+ selective chemosensor, proven to be Hg2+ sensitive up to 2 μg L−1, has been immobilized onto indium tin oxide (ITO) electrodes in a composite form with polyaniline. The coated ITO electrode was placed in a photoelectrochemical cell under closed circuit conditions in which the optical recognition of the chemosensor was converted to a measurable signal. A composite of the fluorescent chemosensor, Rhodamine 6G derivative (RS), and polyaniline (PANI) was immobilized on ITO glass plates and subjected to photovoltage measurements in the absence and presence of Hg2+. The optical responses of the coated electrode were used to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The optical response of the PANI-dye coated electrode increased linearly with increasing Hg2+ concentration in the range 10-150 μg L−1, with a detection limit of 6 μg L−1.  相似文献   

3.
An organic-inorganic hybrid poly-o-toluidine Th(IV) phosphate was chemically synthesized by mixing ortho-tolidine into the gel of Th(IV) phosphate in different mixing volume ratios, concentration of inorganic reactant with a fixed mixing volume ratios of organic polymer. The physico-chemical characterization was carried out by elemental analysis, TEM, SEM, XRD, FTIR and simultaneous TGA-DTA studies. The ion-exchange capacity, chemical stability, effect of eluant concentration, elution behavior and pH titration studies were also carried out to understand the ion-exchange capabilities. The distribution studies revealed that the cation-exchange material is highly selective for Hg2+, which is an important environmental pollutant. Due to selective nature of the cation-exchanger ion-selective membrane electrode was fabricated for the determination of Hg(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.  相似文献   

4.
A new stable chelating resin was synthesized by incorporating 2-aminothiophenol into Merrifield polymer through C-N covalent bond and characterized by elemental analysis, IR and thermal study. The sorption capacity of the newly formed resin for Hg2+ as a function of pH has been studied using 203Hg radioisotope. The resin exhibits no affinity to alkali or alkaline earth metal ions and common anions. The separation of mercury(II) in presence of different alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+), common anions (ClO4 , SO4 2−) and other diverse ions (Ag+, Cu2+, Pb2+, Fe3+, Ni2+ and Zn2+) has been checked. In column operation it has been observed that Hg2+ content of the waste water can be removed at usual pH of natural water. Mercury was determined by isotope dilution method and the concentration of Hg2+ in the waste water spiked with 203Hg was found to be 0.05 to 0.09 μg/ml.  相似文献   

5.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

6.
A new poly(vinyl chloride) (PVC) membrane ion‐selective electrode based on bis‐salicyladehyde‐diaminjodipropylamine (BSDDA) as an ion carrier was successfully applied to the detection of Hg2+ ions. This electrode displayed good selectivity toward Hg2+ in comparison with other metal ions and exhibited a Nernstian slope of 30.5 ± 0.4 mV per decade of Hg2+ over a concentration range of 9.5 × 10?7 to 6.4 × 10?2 M of Hg2+ in the pH range 1.5 to 3.5. The detection limit was 7.0 ± 0.2 × 10?7 M and response time was about 10 s to 25 s. The electrode can be used at least 2 months without apparent divergence in potential. In addition, the effects of experimental parameters such as membrane composition, nature and amounts of plasticizer and additive were investigated. The proposed electrode could be used as an indicator electrode in the detection of Hg2+ in samples.  相似文献   

7.
A new polystyrene based membrane electrode of methyl substituted 6,7:13,14-dibenzo-2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,6,8,11,13-hexaene (I) with sodium tetraphenylborate (NaTPB) and dibutyl phthalate (DBP) as anion excluder and plasticizing agent was prepared and investigated as Hg (II)-selective electrode. The electrode exhibits a Nernstian response for Hg (II) ions over a wide concentration range of 1.0 × 10−1–8.9 × 10−6 M with a slope of 30 ± 1 mV per decade concentration. It has a response time of 10 s and can be used for at least 4 months without any divergence in potentials. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v) content of methanol and ethanol. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metal ions and could be used in a pH range of 2.5–5.0. Normal interferents like Ag+, Cd2+ and Pb2+ low interfere in the working of the electrode. The electrode was successfully used in the direct determination of Hg2+ in aqueous solution.  相似文献   

8.
Polythymine oligonucleotide (PTO)‐modified gold electrode (PTO/Au) was developed for selective and sensitive Hg2+ detection in aqueous solutions. This modified electrode was prepared by self‐assembly of thiolated polythymine oligonucleotide (5′‐SH‐T15‐3′) on the gold electrode via Au? S bonds, and then the surface was passivated with 1‐mercaptohexanol solution. The proposed electrode utilizes the specific binding interactions between Hg2+ and thymine to selectively capture Hg2+, thereby reducing the interference from coexistent ions. After exchanging the medium, electrochemical reduction at ?0.2 V for 60 s, voltammetric determination was performed by differential pulse voltammetry using 10 mM HEPES; pH 7.2, 1 M NaClO4 as supporting electrolyte. This electrode showed increasing voltammetric response in the range of 0.21 nM Hg2+, with a relative standard deviation of 5.32% and a practical detection limit of 60 pM. Compared with the conventional stripping approach, the modified electrode exhibits good sensitivity and selectivity, and is expected to be a new type of green electrode.  相似文献   

9.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

10.
《Analytical letters》2012,45(6):1451-1457
Abstract

A new heterogeneous Mn(II) ion selective coated wire electrode (CWISE) based on tetrapyridine Mn(II) thiocynanate as electroactive material has been described. the working pH range of the electrode is 2.3 to 8.8. the electrode shows a linear response in the concentration range 1.0×10?1M to 1.0×10?6M. the response time of the electrode is 35 sec. the selectivity coefficient for different cations determined by mixed solution method are:

Fe2+(0.05), Cd2+(0.05), Ni2+(0.01), Co2+(0.5), Pb2+(0.5), Hg2+(0.05), Sn2+(0), Zn2+(0)

The electrode can be used for the electrometeric determination of Mn(II) ion.  相似文献   

11.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

12.
The performance of calix[2]furano[2]pyrrole and related compounds used as neutral carriers for silver selective polymeric membrane electrode was investigated. The silver ion-selective electrode based on calix[2]furano[2]pyrroles gave a good Nernstian response of 57.1 mV per decade for silver ion in the activity range 1×10−6 to 1×10−2 M. The present silver ion-selective electrode displayed very good selectivity for Ag+ ion against alkali and alkaline earth metal ions, NH4+, and H+. In particular, the present Ag+-selective electrode exhibited very low responses towards Hg2+ and Pb2+ ions. The potentiometric selectivity coefficients of the silver ion-selective electrode exhibited a strong dependence on the solution pH. In particular, the response of the electrode to the Hg2+ activity was greatly diminished at pH 2.5 compared to that at pH 5.0. Overall, the performance of the present silver ion-selective electrode based on the ionophore, calix[2]furano[2]pyrrole, is very comparable to that of the electrode prepared with the commercially available neutral carrier in terms of slope, linear range, and detection limits.  相似文献   

13.
A novel electrochemical biosensor with high sensitivity and selectivity for mercuric ion detection, based on DNA self-assembly electrode, is designed. Thiol functionalized poly-T oligonucleotides were used as gold electrode modifier through formation of Au–S bond between DNA and gold electrode. In presence of Hg2+ ions, the specific coordination between Hg2+ and thymine bases can change parallel ss-DNA from linear to hairpin structures, which can cause the release of partial DNA molecules from the surface of the electrode. The density of DNA on the surface of electrode correlated with the concentration of mercury in the solution and can be monitored by electrochemical impedance spectroscopy. The limit of detection of this method is pM level of mercuric ions which is far below the upper limit of Hg2+ mandated by United States Environmental Protection Agency (EPA), 2 ppb (10 nM). In addition, this method showed excellent selectivity. A series of divalent metal ions, including Ni2+, Co2+, Mg2+, Zn2+, Ba2+ and Cd2+, have little interference with the detection of Hg2+.  相似文献   

14.
A new polyvinyl chloride (PVC) membrane electrode that is highly selective to Hg(II) ions was prepared by using bis[5-((4-nitrophenyl)azo salicylaldehyde)] (BNAS) as a suitable neutral carrier. The sensor exhibits a Nernstian response for mercury ions over a wide concentration range (5.0×10−2-7.0×10−7 M) with a slope of 30±1 mV per decade. It has a response time of <10 s and can be used for at least 3 months without any measurable divergence in potential. The electrode can be used in the pH range from 1.0 to 3.5. The proposed sensor shows fairly good discriminating ability towards Hg2+ ion in comparison with some hard and soft metals. The electrode was used in the direct determination of Hg2+ in aqueous solution and as an indicator electrode in potentiometric titration of mercury ions.  相似文献   

15.
A new graphene oxide‐based hybrid material (HL) and its Co(II), Cu(II) and Ni(II) metal complexes were prepared. Firstly, graphene oxide and (3‐aminopropyl)trimethoxysilane were reacted to give graphene oxide–3‐(aminopropyl)trimethoxysilane (GO‐APTMS) hybrid material. After that, hybrid material HL was synthesized from the reaction of GO‐APTMS and 2,6‐diformyl‐4‐methylphenol. Finally, Co(II), Cu(II) and Ni(II) complexes of HL were obtained. All the materials were characterized using various techniques. The chemosensor properties of HL were investigated against Na+, K+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Zn2+, Al3+, Cr3+, Fe3+ and Mn3+ ions and it was found that HL has selective chemosensing to Fe3+ ion. All the graphene oxide‐supported complexes were used as heterogeneous catalysts in the oxidation of 2‐methylnaphthalene (2MN) to 2‐methyl‐1,4‐naphthoquinone (vitamin K3, menadione) in the presence of hydrogen peroxide, acetic acid and sulfuric acid. The Cu(II) complex showed good catalytic properties compared to the literature. The selectivity of 2MN to vitamin K3 was 60.23% with 99.75% conversion using the Cu(II) complex.  相似文献   

16.
This article describes an electrochemical metal-ion sensor based on a cobalt phthalocyanine (CoPc) complex and determination of its sensor activity for some transition metal ions. Ag+ and Hg2+, among several transition metal ions, coordinate to the sulfur donors of CoPc and alter the electrochemical responses of CoPc in solution, indicating possible application of the complex as Ag+ and Hg2+ sensor. For practical application, CoPc was encapsulated into a polymeric cation exchange membrane, Nafion, on a glassy carbon electrode and used as an electrochemical coordination element. This composite electrode was potentiometrically optimized and potentiometrically and amperometrically characterized as transition metal-ion sensors with respect to reproducibility, repeatability, stability, selectivity, linear concentration range, and sensitivity. A µmol?dm?3 sensitivity of the CoPc-based sensor indicates its possible practical application for the determination of Ag+ and Hg+2 in waste water samples.  相似文献   

17.
A chloroform membrane system containing dibenzodiaza‐15‐crown‐4 was found to be a highly efficient and selective transport of Ag+ ions through a chloroform liquid membrane. In the presence of thiosulfate ion as a suitable ion stripping agent in the receiving phase, the amount of silver transported across the liquid membrane after 105 minis 95 ± 1.3%. The selectivity of Ag+transport from aqueous solutions containing Tl+, Pb2+, Cd2+, Ni2+, Co2+, K+, Ca2+, Sr2+, Hg2+, Zn2+, Cu2+was investigated. The interfering effect of Cu2+ ions was drastically diminished in the presence of EDTA as a proper masking agent in the source phase.  相似文献   

18.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

19.
Mahajan RK  Kaur I  Lobana TS 《Talanta》2003,59(1):101-105
A new ion-selective PVC membrane electrode based on salicylaldehyde thiosemicarbazone as an ionophore is developed successfully as sensor for mercury(II) ions. The electrode shows excellent potentiometric response characteristics and displays a linear log[Hg2+] versus EMF response over a wide concentration range of 1.778×10−6-1.0×10−1 M with Nernstian slope of 29 mV per decade with the detection limit of 1.0×10−6 M. The response time of the electrode is less than 30 s and the membrane electrode operates well in the pH range of 1.0-3.0. The lifetime of the sensor is about 2 months. The electrode shows better selectivity towards Hg2+ ions in comparison with the alkali, alkaline and some heavy metal ions; most of these metal ions do not show significant interference (KPotHg,M values of the order of 10−3-10−4). The present sensor showed comparable or even better performance vis-à-vis similar PVC based ion-selective electrodes reported in literature. The sensor was also applied as an indicator electrode for potentiometric titration of Hg2+ions with I and Cr2O72−.  相似文献   

20.
Sorbent materials based on three thiacrown ethers, 1,4,7,10-tetrathiacyclododecane (12S4), 1,4,7,10,13-pentathiacyclopentadecane (15S5) and 1,4,7,10.13,16-hexathiacyclooctadecane (18S6) were prepared either by immobilizing the ligands into sol-gel (SG) matrix or coating on commercial solid phase extraction (SPE) column. SG sorbents were characterized by FT-IR, energy dispersive X-ray microanalysis (EDX) and thermogravimetric analysis/derivative thermogravimetric analysis (TGA/DTG). A marked thermal stability of the ligands when immobilized in sol-gel matrix was noted. The competitive sorption characteristics of a mixture of eleven metal ions (Mg2+, Zn2+, Cd2+, Co2+, Mn2+, Ca2+, Cu2+, Ni2+, Ag+, V4+, Hg2+) using: (i) batch method with ligands trapped in SG matrices, and (ii) off-line SPE column containing coated ligands were studied using ICP-MS. The extraction of metals were optimized for key parameters such as pH, contact time/flow rate, particle size (for SG sorbents) and ligand concentration. Under the optimized conditions, all the immobilized thiacrown ethers exhibited highest selectivity toward Ag+, with lesser responses to Hg2+ while the extraction of other metal ions were negligible. Among the SG sorbents, 18S6-SG offer the highest capacity and the best selectivity over Hg2+. However, for practical applications such as for selective isolation and preconcentration of Ag+, the SPE type especially based on 18S6 is preferred as analysis time and recoveries are favorable. The sorbents can be repeatedly used three times as there was no significant deterioration in the metal uptake (%E > 90%) or interference from other metal ions. The optimized procedures were successfully applied for the separation and preconcentration of traces Ag+ in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号