首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for the extraction and capillary zone electrophoresis (CZE) separation of proteins from carob, guar and tara gums in a background electrolyte (BGE) of pH 9 containing 0.1% polyvinyl alcohol is described. The CZE protein profiles exhibit characteristic peaks for each one of the Leguminosae gums, which can be used to construct models capable of identifying samples of carob, guar and tara gums, and predicting the guar content in binary carob-guar mixtures of different geographical origin and harvested in different years. The classification and prediction models are constructed by using linear discriminant analysis (LDA) and multiple linear regression (MLR), respectively. An excellent resolution between the three categories is obtained with LDA, the model being capable of classifying samples with recognition and prediction capabilities of 100%. For MLR models constructed with carob-guar mixtures with and without a common history, the average of the calibration residuals are +/- 0.50 and +/- 0.90%, respectively (average values for the 2-20% guar range). For the later model, the detection limit was 3.2% guar (from the standard deviation of 18 mixtures with 2-4% guar, and for alpha = beta = 0.05).  相似文献   

2.
We have plotted electropherograms in capillary zone electrophoresis (CZE) as a function of the quantity of electric charge (Q) in order to eliminate the dependency of the analyte peak areas, as well as that of the migration times, upon both the capillary temperature and the applied voltage. The procedure is based on an idea of a migration index (MI) and an adjusted migration index (AMI) which were originally proposed by Lee and Yeung. The value of Q is measured accurately and calculated easily because it is given by a product of the electrophoretic current and the migration times, where the index MI is derived by dividing the value of Q by the effective volume of the capillary. By calculating the CZE peak area from the newly plotted electropherogram, improvement in precision in quantitative analysis is expected. Concerning AMI, careful treatment is required in its application to analyte peaks whose migration time is close to that of the neutral marker. Experimental data and discussions concerning the migration indices are presented.  相似文献   

3.
Ionic substances with melting points close to room temperature are referred to as ionic liquids. Because ionic liquids are environmentally benign and are good solvents for a wide range of both organic and inorganic materials, interest for their potential uses in different chemical processes is increasing. In this paper, a capillary electrophoretic method for the analysis of basic proteins including lysozyme, cytochrome c, trypsinoge, and α-chymotyypsinogen A is reported. The method, in which 1-alkyl-3-methylimidazolium-based ionic liquids are used as the running electrolytes, leads to a surface charge reversal on the capillary wall. The effects of the alkyl group, imidazolium counterion, and the concentration of the ionic liquids were discussed. The optimum buffer system was a 90 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (1E-3MI-TFB) solution. The applied voltage was −15 kV and detection was performed by monitoring absorbance at 240 nm. Baseline separation, high efficiencies, and symmetrical peaks of four proteins were obtained. The R.S.D. values of migration times and peak areas were <0.68 and <3.0%, respectively. The separation mechanism seems to involve association between the imidazolium cations and the proteins.  相似文献   

4.
A simple and economical capillary electrophoresis method has been developed for the analysis of four model basic proteins by employing a polymeric ionic liquid (PIL), poly(1-vinyl-3-butylimidazolium) bromide, as the dynamic coating additive. When a small amount of PIL was present in the background electrolyte, a cationic coating on the inner surface of fused-silica capillary was established. These PIL modified capillaries not only generated a stable reversed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the PIL concentration in the background electrolyte, pH values and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum conditions, a satisfied separation of basic proteins with peak efficiencies ranging from 247,000 to 540,000 (plates m−1) had been accomplished within 11 min. The run-to-run RSDs (n = 3) of the migration times for the four basic proteins were all less than 0.37%.  相似文献   

5.
Chitosan/carboxymethyl cashew gum polyelectrolyte complexes were synthesized using different proportions of chitosan (CH) and carboxymethyl cashew gum (CMCG). The optimum CH:CMCG ratio was 25:75, which produced highest product yield. Polyelectrolyte (PEC) samples were characterized by thermogravimetric analysis and FT-IR spectroscopy. Parameters such as initial and maximal degradation temperatures and activation energy (Ea) were determined. Activation energies follows the order CMCG > CH > PECs samples. Infrared analysis from residual products after heating at 280 °C in different times indicated that cleavage of the glycosidic bond and formation of unsaturated products occurred.  相似文献   

6.
Polysaccharides can form interfacial complexes with proteins to form emulsions with enhanced stability. We assessed the effect of adding gum guar or gum arabic to egg yolk/fish oil emulsions. The emulsions were produced using simple or high-pressure homogenization, stored for up to 10 days at 45 °C, and characterized for their particle size and distribution, viscosity, encapsulation efficiency, oxidative stability, and cytotoxicity. Emulsions containing gum guar and/or triglycerides had the highest viscosity. There was no significant difference in the encapsulation efficiency of emulsions regardless of the polysaccharide used. However, emulsions containing gum arabic displayed a bridging flocculation effect, resulting in less stability over time compared to those using gum guar. Emulsions produced using high-pressure homogenization displayed a narrower size distribution and higher stability. The formation of peroxides and propanal was lower in emulsions containing gum guar and was attributed to the surface oil. No significant toxicity toward Caco-2 cells was found from the emulsions over time. On the other hand, after 10 days of storage, nonencapsulated fish oil reduced the cell viability to about 80%. The results showed that gum guar can increase the particle stability of egg yolk/fish oil emulsions and decrease the oxidation rate of omega-3 fatty acids.  相似文献   

7.
This study compares two types of enzymes: maltogenic amylase (Novamyl 10000 BG) and lipase (Lipopan F BG, Lipopan Xtra BG), both separately and in combination, and seven hydrocolloids (guar gum, xanthan gum, carrageenan, β-glucan, carob gum, and carboxymethyl cellulose (CMC)) on the physical and sensory properties of a bakery product (white wheat bread). Their effect was observed on the baking characteristics of volume, specific volume, shape, mass, shelf-life (penetration and water activity test), and overall taste. The best results in shelf-life extension from the hydrocolloids were shown by β-glucan, a combination of xanthan gum + carrageenan and guar gum. From the enzymes, the best results were achieved with Lipopan Xtra BG and Novamyl 10000 BG + Lipopan F BG combination. The sensory properties (e.g. taste, colour, shape, aroma, elasticity, hardness) were evaluated by ten trained panellists, holding certification in sensory analysis. β-Glucan and Novamyl 10000 BG + Lipopan F BG combination increased the bread volume significantly and also were deemed to afford the most favourable taste.  相似文献   

8.
Simonelli  J. K.  Lee  A. H.  Gallea  P. E.  Cheng  K. C. 《Chromatographia》2007,66(11):977-981

This paper describes a rapid micellar electrokinetic capillary chromatographic (MEKC) method for the mapping and identification of biopharmaceutical grade cell culture media. The method has been validated and we currently use it as an identity test for raw material release testing of cell culture media. The MEKC method is capable of resolving components of cell culture medium with specificity, matching the sample profile with the expected component profile, and precision. The precision of the assay was shown by comparison of peak migration times and relative peak areas of three injections of test media on each of three days. The intra-day and inter-day peak migration times and UV214 nm responses (% total peaks areas) of the assay were within acceptable ranges. The intermediate precision (% Relative Standard Deviation) of peak migration times was less than 3%. The intermediate precision (% Relative Standard Deviation) of relative percent peak areas was less than 10% for major peaks present. A linear relationship between response (% total peaks areas) and the concentration of the cell culture medium was observed, with the average correlation coefficient of >0.96 for major peaks (each accounting for greater than 2% of total peaks areas). Based on the identification by chromatographic profile, linearity, and precision, the MEKC method for the mapping of cell culture media components is suitable for the intended use.

  相似文献   

9.
A method to determine five fluoroquinolones (FQs), namely, rufloxacin (RUF), ciprofloxacin (CIP), enrofloxacin (ENO), gatifloxacin (GAT) and moxifloxacin (MOX), in acidic buffer by capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C4D) technique is presented. Separation was carried out in a fused-silica capillary (42 cm × 50 μm) using a buffer composed of 10 mM tartaric acid, 14 mM sodium acetate and 15% (v/v) methanol at pH 3.8. The RSDs of the migration times and peak areas were 0.65% and 12.3% (intraday), 1.28% and 8.8% (interday), respectively. CE-C4D in combination with liquid–liquid extraction (LLE) as clean-up and preconcentration procedure, allows detection of the FQs in fortified chicken muscle samples with detection limits of 6.8–11.7 ng/g. This method shows potential in rapid determination of FQs in samples with complex matrix.  相似文献   

10.
The monosaccharide constituents of plant gums were separated by capillary electrophoresis at pH 12.1 and detected with indirect UV absorbance. The plant gums investigated were gum arabic, gum acacia, gum tragacanth, cherry gum and locust bean gum (carob gum). The monosaccharides obtained after hydrolysis with 2M trifluoroacetic acid and lyophilisation of the hydrolysate were arabinose, galactose, mannose, rhamnose, xylose, fucose, and glucose, and the two sugar acids galacturonic and glucuronic acid, in accordance with the literature. They were separated in a background electrolyte consisting of NaOH to adjust the pH, 20 mM 2,6-pyridinedicarboxylic acid as chromophore for detection and 0.5 mM cetyltrimethylammonium bromide as additive to reverse the electroosmotic flow. Based on their electropherograms, the plant gums could be identified by their typical composition (depicted in a decision scheme) as follows: a peak of glucuronic acid, together with that of rhamnose, is indicative for gum arabic. Peaks of galacturonic acid and fucose point to gum tragacanth. Locust bean gum shows a major peak for mannose (with the concomitant galactose peak in ratio 4-1), whereas a glucuronic acid and a mannose peak together with a prominent arabinose peak indicates cherry gum. The method was applied to identify the plant gums in samples like watercolours and in several paint layers like gum tempera or those with egg white or drying oils as additives. Artificial aging experiments of thin layers of gum arabic on paper or glass carried out with UV-A radiation (366 nm) did not result in changes of the saccharide patterns, in contrast to the simultaneously conducted aging of a drying oil layer.  相似文献   

11.
The system peaks that often appear on electropherograms in anion separation by CE with indirect spectrophotometric detection, negative voltage polarity and cathodic EOF are studied. The system peaks are shown to correspond to the zones with the changed concentration of the BGE constituents; they appear while the zone of each analyte anion passes through the outlet end of the capillary and are transported to the detector by EOF. An equation is suggested for predicting migration times of the system peaks with an error of 1%. The ratios of the system peak area to the analyte peak area are found to amount to 20%. It is shown that it is possible to avoid overlapping of the system peaks and analyte peaks by controlling the EOF velocity owing to hydrodynamic pressure. Using the mathematical simulation of CE shows that the system peaks and baseline shift can result from changing the transference numbers of the BGE ions and analyte ions at the capillary edge. The cases when the system peak may be incorrectly identified as the peak of analyte ion are considered. In order to avoid such errors, some practical recommendations are given.  相似文献   

12.
Zhao-Yan Ren  Yan-Ping Shi 《Talanta》2009,78(3):959-801
A capillary zone electrophoresis method was developed for simultaneous determination of nine flavonoids, including two rare flavonols, in Tibetan medicine Anaphalis margaritacea. Baseline separation was performed at pH 9.6 with 25 mM Na2B4O7 and 10 mM NaH2PO4 buffer solution, 20 kV as driving voltage and 275 nm as detection wavelength. Repeatability tests showed that the R.S.D. of both intra- and inter-day migration times and peak areas were less than 5%. Recovery results ranged from 87.9% to 106.1%. Samples of A. margaritacea extracts were analyzed using the validated method, which is useful for its quality control.  相似文献   

13.
Novel hydrogel membranes (coded as GA) based on cationic guar gum (CGG) and poly(acrylic acid) (PAA) were synthesized with various feed compositions. Their structure and properties were studied by Fourier transform infrared spectra, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analyses and tensile tests. The structure analyses indicated that there existed strong electrostatic interaction between CGG and PAA, which resulted in uniform structure and complete miscibility between the two components. On the basis of thermogravimetric analyses, the activation energies (Ea) of the first degradation of the membranes increased from 34.5 to 77.1 kJ/mol with an increase of CGG content, while the residual ratios of the membranes increased from 7.6 to 36.1 wt% at 600 °C. This indicated an elevated thermal stability of PAA-based materials through an introduction of CGG. The tensile tests exhibited the mechanical properties of the membranes were improved with an increase of CGG content, and the maximum value of 41.1 MPa was reached.  相似文献   

14.
Yue ME  Jiang TF  Shi YP 《Talanta》2004,62(4):695-699
A fast capillary zone electrophoresis (CZE) method, using dimethyl-β-cyclodextrin (DM-β-CD) as modifier, has been developed for the determination of three flavonoids (quercetin (QU), kaempferol (KA) and isorhamnetin (IS)) in the Chinese herbal extract from Hippophae rhamnoides and its medicinal preparation (Sindacon tablet). Optimum separation was achieved with 20 mM borate buffer at pH 10.0 containing 5 mg ml−1 of DM-β-CD. The applied voltage was 15 kV and the capillary temperature was kept constant at 25 °C. Regression equations revealed linear relationships (correlation coefficients: 0.9973, 0.9992 and 0.9996) between the peak area of each compound (QU, KA and IS) and its concentration. The relative standard deviations of migration times and peak areas were <1.53 and 4.14%, respectively. The effects of several CE parameters on the resolution were studied systematically. The contents of three flavonoids in H. rhamnoides were successfully determined with 4.5 min, with satisfactory repeatability and recovery. It was also tested that the possibilities of using this method for the determination of flavonoids in Chinese medicinal preparation.  相似文献   

15.
A procedure for the evaluation of the wheat flour hardness, based on capillary electrophoresis of a protein extract in an isoelectric acidic buffer, was developed. The 13 flour samples were extracted twice, and two injections of each extract were made. Separations were performed in a background electrolyte (BGE) containing 40 mM aspartic acid, 6 M urea, and 0.5% hydroxyethylcellulose at 60 degrees C. Using the normalized and corrected areas of 79 peaks and peak groups, a partial least squares regression (PLS1) model was able to predict the flour strength or dough deformation work (W) and the dough tenacity/extensibility ratio (P/L) (Alveograph parameters) with an average relative standard deviation in the predictions of +/- 3% and +/-8%, respectively. These values amounted to a +/- 6-8% and +/- 11% with multiple linear regression (MLR) and PLS1 models constructed by measuring only 12 peaks and peak group areas on the electropherograms.  相似文献   

16.
An in-vial liquid–liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1–119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d. × 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25 °C, injection time of 4 s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.  相似文献   

17.
This paper describes a rapid micellar electrokinetic capillary chromatographic (MEKC) method for the mapping and identification of biopharmaceutical grade cell culture media. The method has been validated and we currently use it as an identity test for raw material release testing of cell culture media. The MEKC method is capable of resolving components of cell culture medium with specificity, matching the sample profile with the expected component profile, and precision. The precision of the assay was shown by comparison of peak migration times and relative peak areas of three injections of test media on each of three days. The intra-day and inter-day peak migration times and UV214 nm responses (% total peaks areas) of the assay were within acceptable ranges. The intermediate precision (% Relative Standard Deviation) of peak migration times was less than 3%. The intermediate precision (% Relative Standard Deviation) of relative percent peak areas was less than 10% for major peaks present. A linear relationship between response (% total peaks areas) and the concentration of the cell culture medium was observed, with the average correlation coefficient of >0.96 for major peaks (each accounting for greater than 2% of total peaks areas). Based on the identification by chromatographic profile, linearity, and precision, the MEKC method for the mapping of cell culture media components is suitable for the intended use.  相似文献   

18.
Guar gum was chemically modified by sulphonation using chlorosulphonic acid (ClSO3H) as a reagent. Effects of molar ratio of ClSO3H to glucopyranosic unit (ClSO3H/GU), reaction time and reaction temperature on the degree of sulphonation (DS) and molecular weight (Mw) of products were studied. The structures of guar gum sulphate were investigated by GPC, FT‐IR and UV‐Visible spectroscopy. Activated partial thromboplastin time (APTT) assay showed that the guar gum sulphate could inhibit the intrinsic coagulant pathway. The anticoagulant activity strongly depended on the DS and Mw of polysaccharides. DS>0.56 was essential for anticoagulant activity. The guar gum sulphate with the DS of 0.85 and the Mw of 3.40×104 had the best blood anticoagulant activity.  相似文献   

19.
Several metal-binding proteins, including albumin, carbonic anhydrase, conalbumin, cytochrome c, ferritin, hemoglobin, myoglobin, plasma amine oxidase, superoxide dismutase and transferrin were separated with capillary zone electrophoresis (CZE) in uncoated and coated capillaries. Phosphate and tetraborate buffers achieved complementary separation selectivities. Optimised pre-wash protocols for uncoated capillaries using 0.1 M HCl as a rinsing solution for the borate buffer and a combination of 0.1 M NaOH and 0.1 M HCl for the phosphate system improved the stability of migration times considerably with coefficients of variation between 0.10 and 0.77% (n=7) instead of up to 2.92% with inappropriate rinsing conditions. Capillaries coated with poly(vinyl alcohol) and equipped with a 150 μm i.d. bubble cell increased the signal-to-noise ratio by a factor three, additionally improving the resolution. For commercial protein standards, which gave several peaks in CZE with UV detection, MS data proved the presence of proteinaceous contaminants. Molecular weights (Mr) of proteins experimentally determined from MS data showed deviations from theoretical Mr as small as 0.002-0.021%. Applicability of the developed separation for clinical samples is shown for human serum.  相似文献   

20.
Metallothioneins (MTs) belong to cysteine-rich proteins with unique higher structure. One of the most known MT's functions is metals detoxification and maintaining their homeostasis in a cell. Structure of MT with naturally occurred zinc(II) ions can be affected by concentration of metal ions as well as redox milieu inside a cell, however the exact explanation and biochemical effects of the structural changes are still missing. In this study we used capillary electrophoresis on chip coupled with fluorescence detection to determine structural changes of MT with increasing concentration of zinc(II) ions and under various redox conditions. To investigate the structural-dependent effects, reduced and/or oxidized apo-MT (MT without natural occurred metal ion) was prepared. Zinc binding into reduced and/or oxidized apo-MT was compared. MT was incubated with 0, 5, 15, 25, 50 and 100 μM ZnCl2 for 1 h in 37 °C. Formation of MT aggregates with increasing zinc concentration was observed by spectrophotometry, chip capillary electrophoresis, and SDS-PAGE. We found out that reduced MT forms aggregates more readily compared to oxidized MT. Using the chip capillary electrophoresis allowed us relative quantification of MT aggregation as a decrease in the area of the signal corresponding to the monomer form of MT (Mw 15 kDa, migration time 26.5 s) and its ratio to total signal (sum of all signals measured by the electrophoresis). The dependences had an exponential character with equation y = 2.4 × e−0.01x, R2 = 0.945 for 15 kDa peak area and y = 0.11 × e−0.01x, R2 = 0.938 for decrease of 15 kDa peak area ratio to the total signal. Zn–MT interaction was 30% faster during the first 15 min and 50% faster during the whole experiment for reduced MT. It can be concluded that formation of MT aggregates is dependent on redox state and Zn(II) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号