首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

2.
李志平  李辉  刘芬  逯翠梅 《应用化学》2013,30(8):915-921
以硅胶为牺牲载体,石杉碱甲为模板分子,甲基丙烯酸为功能单体,二乙烯基苯为交联剂,偶氮二异丁腈为引发剂,首次制备了石杉碱甲分子印迹聚合物,并用红外光谱、扫描电子显微镜和热重分析研究了印迹聚合物的结构特征,用静态吸附法和Scatchard分析法研究了印迹聚合物的识别效能和表面位点分布特征。 结果表明,石杉碱甲印迹聚合物对模板分子具有较好的选择吸附性能,选择系数为1.399。Scatchard分析表明,印迹聚合物基体中主要存有两类吸附位点,对高亲和位点:平衡离解常数Kd1=0.776 g/L,最大表观结合量Qmax1=0.213 mg/g;对低亲和位点:平衡离解常数Kd2=0.169 g/L,最大表观结合量Qmax2=0.832 mg/g。 当该聚合物用于微固相萃取蛇足石杉粗提液中的石杉碱甲时,石杉碱甲回收率为93.5%,显示了较好的富集效果。  相似文献   

3.
以过氧化苯甲酰(BOP)为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用热聚合法在多壁碳纳米管(MWNTs)表面制备印迹聚合物(MWNTs-MIPs)。采用红外和热重分析等技术对聚合物结构进行表征。采用液相色谱考察该分子印迹聚合物对过氧化苯甲酰的吸附特性。结果表明该印迹聚合物对过氧化苯甲酰表现出特异性吸附,该印迹聚合物对模板分子存在一种结合位点,其最大表观结合量为56.20 µmol/g。该印迹聚合物成功应用于固相萃取富集面粉中微量过氧化苯甲酰,浓度富集因子为526。  相似文献   

4.
Three different molecularly imprinted polymers (MIPs) have been prepared by precipitation polymerisation using linuron (LIN) or isoproturon (IPN) (phenylurea herbicides) as templates and methacrylic acid (MAA) or trifluormethacrylic acid (TFMAA) as functional monomers. The ability of the different polymers to selectively rebind not only the template but also other phenylurea herbicides has been evaluated. In parallel, the influence of the different templates and functional monomers used during polymers synthesis on the performance of the obtained MIPs was also studied through different rebinding experiments. The experimental binding isotherms were fitted to the Langmuir-Freundlich isotherm allowing to describe the kind of binding sites present in the imprinted polymers under study. It was concluded that TFMAA-based polymer using IPN as template presents the best properties to be used as a selective sorbent for the extraction of phenylurea herbicides.  相似文献   

5.
A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 micromol l(-1) and 1.42 mmol l(-1), respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.  相似文献   

6.
Design of an imprinted clean-up method for mycophenolic acid in maize   总被引:2,自引:0,他引:2  
In the present work, the development of imprinted polymers selective towards mycophenolic acid and their application in food analysis are reported for the first time. To synthesize the molecularly imprinted polymer (MIP) 4-vinylpyridine and ethyleneglycol dimethacrylate were applied as functional monomer and cross-linker, respectively. Besides the toxin itself, the implementation of structural analogues as templates was evaluated. A molecularly imprinted solid-phase extraction (MISPE) procedure was designed for the selective clean-up of maize extracts. Binding experiments and Scatchard analysis indicated the presence of specific binding sites in the imprinted polymers. The imprinting effect varied along with the selected template. The dissociation constant (K(D)) of the higher affinity binding sites ranged from 0.8 μmol/l to 15.6 μmol/l, while the K(D) of the lower affinity binding sites was in the range of 138.5-519.3 μmol/l. The performance of the MIPs throughout the clean-up of spiked maize sample extracts was evaluated and compared with the results obtained when applying a non-imprinted polymer. Depending on the polymers and the spiked concentration, recoveries after MISPE and non-imprinted solid-phase extraction varied respectively from 49% to 84% and from 28% to 31%. The imprinted polymers were superior regarding matrix effect, limit of detection (LOD) and limit of quantification (LOQ). LOD ranged from 0.17 μg/kg to 0.25 μg/kg and LOQ varied from 0.57 μg/kg to 0.82 μg/kg. Analysis of 15 maize samples by liquid chromatography tandem mass spectrometry revealed that the MIPs could be excellent sorbents for clean-up of contaminated food samples.  相似文献   

7.
Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ max of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.  相似文献   

8.
New insight into modeling non-covalently imprinted polymers   总被引:1,自引:0,他引:1  
Three series of polymers were carefully formulated with increasing amounts of template while keeping the polymer components constant. The number of binding sites (N) and the number average association constant (K(n)()) were calculated for each polymer in a series, using equations adapted from the literature describing molecularly imprinted polymers (MIPs). The trends of N and K(n)() for each series of polymers, which were graphed versus percent template, suggest multiple functional monomers in the binding sites of noncovalent MIPs. This new insight has implications for understanding the underlying mechanisms for the formation of binding sites in the MIPs studied.  相似文献   

9.
Functional polystyrene (PS) crosslinked microbeads were developed by dispersion polymerization as fluorescent molecularly imprinted polymers (MIPs) having cavities with specific recognition sites. The functional azobenzene molecule modified with pyridine was self‐assembled with Pyrenebutyric acid (template molecules), and introduced during the second stage of dispersion polymerization of polystyrene. The template molecule was removed from MIP by Soxhlet using acetonitrile as solvent. Non imprinted polymer (NIP) having no template was also synthesized for comparative study. Fluorescence spectroscopy could be used as a tool to derive insight into the location of the template molecules on the MIP or NIP. The template molecules were adsorbed on the surface of the NIPs during binding studies, which was evidenced from the pyrene excimeric emission observed at 440 nm. The template binding efficiency of the NIPs were much lower compared to MIPs. Pyrene emission from MIP upon rebinding showed typical monomeric emission in the 375–395 nm range, confirming its location in isolated cavities. In rebinding studies of the template molecules, the MIPs selectively took up the template for which the cavity was designed, which demonstrated their selectivity towards template molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1558–1565  相似文献   

10.
Muhammad T  Nur Z  Piletska EV  Yimit O  Piletsky SA 《The Analyst》2012,137(11):2623-2628
The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.  相似文献   

11.
The synthetic receptors for cocaine, deoxyephedrine, methadone and morphine were computationally designed and produced using molecular imprinting. The structure and energy of the molecular complexes were analysed by computational techniques. The possible structures of the binding sites in the synthetic receptors have been compared with those of corresponding natural receptors. The composition of imprinted polymers was optimised to allow adequate performance under the same experimental conditions. All selected molecular imprinting polymers (MIPs) demonstrated stronger affinity in comparison with corresponding blank polymers resulting in imprinted factors (I) equal to 1.2 (cocaine), 2.5 (deoxyephedrine), 3.5 (methadone) and 3 (morphine) which suggested that the specific binding site for each molecule was successfully created. The polymers studied possessed good selectivity and affinity towards their templates and could be recommended for the integration with sensor devices. From a practical point of view, especially for multisensor requirements, the synthetic receptors based on imprinted polymers could be superior to natural receptors due to their stability, robustness and compatibility with automation processes required for sensor fabrication.  相似文献   

12.
李鸣芳  王兵 《化学学报》2012,70(7):921-928
以槲皮素-钴(Ⅱ)的配合物为模板分子,在强极性甲醇溶剂中分别采用低温光引发和高温热引发聚合制备槲皮素-钴(Ⅱ)配位印迹聚合物.紫外-可见光谱分析确定了槲皮素与钴(Ⅱ)形成配合物的最佳配位比.根据印迹聚合物的平衡结合量优化功能单体丙烯酰胺用量.利用红外光谱、透射电镜和平衡结合实验,考察不同引发方式对聚合物的结构、微观形貌及结合性能的影响.进一步通过特异吸附容量和印迹指数确定,低温光引发聚合更适于配位分子印迹聚合物的制备.同时研究了不同阳、阴离子对印迹聚合物选择识别性的影响.结果表明光引发的金属配位分子印迹聚合物具有良好的吸附选择性,印迹指数可达3.919.  相似文献   

13.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

14.
Molecular dynamics simulations combined with spectroscopic analysis were applied to understand the nature of recognition in molecularly imprinted polymers (MIPs), and for optimizing the MIP formulation. The best monomers for synthesizing imprinted materials for 17β-estradiol (BE2) were selected by evaluating the strength of the template–monomer interaction derived from molecular dynamics simulations. A number of potential functional monomers for BE2 were screened for hydrogen-bonding strength in order to analyze template–monomer interactions favorable for synthesizing noncovalent MIPs, with the simulations revealing that methacrylic acid, 2-(diethylamino)ethyl methacrylate, and methacrylamide provided the highest binding affinity to BE2. These theoretical predictions agree with previously reported results on batch rebinding studies using the corresponding functional monomers for synthesizing a series of MIPs. Molecular analysis such as 1H NMR was used for experimentally confirming the prevalent template–monomer interactions derived from the modeling results. Molecular dynamics simulations indicating monomer dimerization in the prepolymerization solution correlated with the nature of the porogenic solvent, which was confirmed by NMR studies on hydrogen-bonding interactions of methacrylic acid in different solvents. Furthermore, batch rebinding studies revealed that the specific functionalities of the monomers essential to rebinding are retained after polymerization, which proves that the application of computational methods for modeling the prepolymerization solution provides useful information for optimizing real MIP systems.  相似文献   

15.
In the present work, microwave heating initiated precipitation polymerization was developed to prepare podophyllotoxin (PPT) molecularly imprinted polymers (MIPs), resulting in much shorter polymerization time and better particle morphology. Prior to the polymerization, ultraviolet and FTIR spectroscopy were used to study the interactions between PPT and the functional monomers. The synthesized parameters were respectively optimized and the optimal conditions for the efficient adsorption property were template: PPT, 1 mmol; functional monomer: acrylamide, 6 mmol; bi-crosslinker: ethylene glycol dimethacrylate, 20 mmol and divinylbenzene, 20 mmol; porogen: acetonitrile, 40 mL; initiator: azobisisobutyronitrile, 0.01mol L?1; polymerization temperature: 60°C. FTIR spectroscopy, SEM and thermal analysis were used to characterize the MIPs. The results of the equilibrium rebinding experiments and the competitive adsorption experiments showed that these imprinted polymers exhibited good adsorption ability for the PPT. Scatchard analysis illustrated that two and one types of binding sites were generated in the MIPs and non-imprinted polymers (NIPs), respectively. Using the prepared MIPs as the solid phase extraction (SPE) sorbent, PPT was extracted selectively and efficiently from Dysosma versipellis, Sinopodophyllum hexandrum and Diphylleia sinensis. The regression equation was y=5.873×10?x+17075.659 with the correlation coefficient of 0.9994 in the concentration range of 0.005-0.4 mg mL?1. After washing and eluting the SPE column with methanol and MeOH/acetic acid solution (v/v, 9:1), the limits of detection were 0.12-0.18 μg mL?1 and their recoveries were in the range of 89.5-91.1% with all RSDs lower than 3.7.  相似文献   

16.
Tetracycline (TC)‐imprinted microspheres have been synthesized by reversible addition–fragmentation chain‐transfer precipitation polymerization using PEG as a coporogen. In the synthesis, methacrylic acid and ethylene dimethacrylate were used as the functional monomer and cross‐linker, respectively. 2,2′‐Azobisisobutyronitrile was the initiator, and cumyl dithiobenzoate was the chain‐transfer reagent. Although monodispersed microspheres were obtained using acetonitrile as porogen, the particles cannot be used in the column extraction because of the high backpressure. To increase the porosity of the material, PEG was introduced as a coporogen. The influence of the molecular weight and concentration of PEG on the morphology, binding affinity, and porosity of the molecularly imprinted polymers (MIPs) have been studied. The results demonstrated that PEG as a macroporogen increased the porosity of the polymers. Meanwhile, the column backpressure was reduced using the MIPs with higher porosity. The binding affinity of the MIPs was increased when a low concentration of PEG was employed, while it was decreased when the ratio of PEG 12 000/monomers was >0.8%. Under the optimized conditions, TC‐imprinted microspheres with good selectivity and size uniformity have been obtained, which facilitates its application in the column extraction for TC determinations.  相似文献   

17.
A variety of molecularly imprinted polymers (MIPs) against clozapine (CLZ) were synthesized and their recognition properties were compared with blank non-imprinted polymers. Methacrylic acid (MAA) was used as a functional monomer and Chloroform or tetrahydrofuran (THF) were applied as polymerization solvents. Chloroform as the solvent and MAA/CLZ ratio of 5 was selected as optimized polymerization condition. In Scatchard analysis of MIP-CLZ interactions, two classes of binding sites were found in MIP—high affinity (KD = 14.5 μM) and low affinity (KD = 322.5 μM) binding sites. The polymer was evaluated as a selective sorbent in molecularly imprinted solid-phase extraction (MISPE) of CLZ from human serum. The MISPE procedure was developed and optimized with a recovery of 88-102%. The intra- and inter-day precision values were less than 1.36% and 2.5%, respectively. The selectivity of MISPE for CLZ was studied in comparison with some drugs. These drugs could be present with CLZ, simultaneously in serum of patients. The data indicated that the imprinted polymer had a good selectivity and affinity for CLZ and could be used for selective extraction and analysis of CLZ in human serum.  相似文献   

18.
以N 叔丁氧羰酰 L 色氨酸和N 叔丁氧羰酰 L 酪氨酸为印迹分子 ,分别采用光引发聚合和热引发聚合制备了分子印迹聚合物 ,并对聚合物的手性识别能力进行了色谱评价 .结果表明 ,制备的分子印迹聚合物对印迹分子具有特异性的吸附作用 ,光引发聚合的N 叔丁氧羰酰 L 色氨酸的印迹聚合物对印迹分子的选择性因子达到 2 .318,热引发聚合的N 叔丁氧羰酰 L 酪氨酸对印迹分子的选择性因子为 1 373 进一步研究了分子印迹聚合物的孔结构 ,发现光引发聚合的分子印迹聚合物与空白聚合物的孔结构差别比热引发聚合的分子印迹聚合物与空白聚合物的差别更为明显 .对印迹分子洗脱前后的印迹聚合物的孔结构研究进一步表明 ,印迹分子存在于不同类型的孔中 .  相似文献   

19.
Cholesterol-imprinted polymers were prepared in bulk polymerization by the methods of covalent and non-covalent imprinting. The former involved the use of a template-containing monomer, cholesteryl (4-vinyl)phenyl carbonate, while the latter used the complexes of template and functional monomer, methacrylic acid or 4-vinylpyridine prior to polymerization. Columns packed with these molecularly imprinted polymers (MIPs) were all able to separate cholesterol from other steroids. For different combinations of cholesterol and beta-estradiol concentrations in a total of 1 g/l, the peak retention times for both compounds were nearly constant. The adsorption capacity for cholesterol onto the MIPs was found to significantly depend on the use of functional monomers, but the selectivity factors were only slightly different from each other at 2.9 to 3.2 since the separation was all based on the specific binding of cholesterol to recognition sites formed on the imprinted polymers. The capacity factors for cholesterol were determined to be 3.5, 4.0 and 3.1, respectively, for covalently imprinted, 4-vinylpyridine-based, and methacrylic acid-based non-covalently imprinted polymers. However, the covalently imprinted polymer was found to have a higher adsorption capacity for cholesterol and about fivefold higher chromatographic efficiency for cholesterol separation, in comparison with non-covalently imprinted polymers. The use of covalent imprinting significantly reduced the peak broadening and tailing. This advantage along with constant retention suggests that the covalently imprinted polymer has potential for quantitative analysis.  相似文献   

20.
Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号