首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang CY  Hu XY 《Talanta》2005,67(3):625-633
Benorilate was determined by the differential pulse voltammetry (DPV) using a carbon paste electrode modified by silver nanoparticles in 1.25 × 10−3 mol l−1 KH2PO4 and Na2HPO4 buffer solution (pH = 6.88, 25 °C) .The anodic peak potential was +0.970 V (versus SCE). A good linear relationship was realized between the anodic peak currents and benorilate concentrations in the range of 1.0 × 10−7 to 2.5 × 10−4 mol l−1 with the detection limit of 1.0 × 10−8 mol l−1. The recovery was 95.2-103.6% with the relative standard deviation of 3.6% (n = 9). The pharmaceutical preparations, benorilate tablets samples and its metabolite (salicylic acid) in urine were determined with the desirable results.  相似文献   

2.
The use of selective pre-concentration and differential pulse anodic stripping voltammetry (DPASV) using a carbon paste electrode modified (CPEM) with spinel-type manganese oxide has been proposed for the determination of lithium ions content in natural waters. The new procedure is based on the effective pre-concentration of lithium ions on the electrode surface containing spinel-type Mn(IV) oxide with the reduction of Mn(IV) to Mn(III) and consequently the lithium ions intercalation (insertion) into the spinel structure. The best DPASV response was reached for an electrode composition of 25% (m/m) spinel-type MnO2 in the paste, 0.1 mol l−1 tris(hydroxymethyl)aminomethane (TRIS) buffer solution of pH 8.3, scan rate of 5 mV s−1, accumulation potential of 0.3 V versus saturated calomel reference electrode (SCE), pre-concentration time of 30 s and potential pulse amplitude of 50 mV. In these experimental conditions, the proposed methodology responds to lithium ions in the concentration range of 2.8×10−6 to 2.0×10−3 mol l−1 with a detection limit of 5.6×10−7 mol l−1. The determination of the lithium ions content in different samples of natural waters samples using the proposed methodology and atomic absorption spectrophotometry are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

3.
A PVC membrane electrode for iodide ions based on Cu(I)-bathocuproine as ionophore in membrane composition is prepared. The electrode exhibits a linear response over a wide concentration range 5.0×10−6 to 2.0×10−1 mol l−1 with a detection limit 1.0×10−6 mol l−1. The proposed membrane electrode shows Nernstian behavior with a slope of −56.8 mV/decade, a fast response time 10 s and a lifetime at least 3 months. Iodide-selective electrode reveals good selectivities for iodide ion over a wide variety of the other anions and can be used in pH range of 3-9. It can also be used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

4.
Di J  Zhang F 《Talanta》2003,60(1):31-36
This paper described the determination of trace manganese using linear sweep voltammetry at a pretreatment glassy carbon electrode. The glassy carbon electrode pretreated by electrochemical method in the 0.1 mol l−1 NaOH solution greatly improved the electrode responsibility in the determination of manganese(II). The barrier to the detection of low manganese concentration was overcome by means of autocatalytic effect of manganese oxide deposited on the electrode in advance. Under the optimum experiments condition (0.04 mol l−1 NH3-NH4Cl buffer solution, pH 9.0), the linear range was 4×10−8 to 1×l0−6 mol l−1 Mn(II) for linear sweep voltammetry and 1×10−9 to 4×10−8 mol l−1 Mn(II) for convolution voltammetry. The relative standard deviation for 2×10−8 mol l−1 Mn(II) is 3.4%. The proposed method is simple, rapid, sensitive and selective. It had been applied to the determination of trace manganese in samples with satisfactory results.  相似文献   

5.
Quintino MS  Angnes L 《Talanta》2004,62(2):231-236
This paper presents a simple, rapid and reproducible method of analysis of salbutamol in pharmaceutical products, utilizing batch injection analysis (BIA) associated with amperometric detection. A study of salbutamol oxidation demonstrated a strong dependence between electrode fouling and pH. All determinations were done utilizing a glassy carbon electrode in presence of 3.0 mol l−1 NaOH. A large linear dynamic range from 8×10−7 to 2×10−4 mol l−1 was obtained by using an injected volume of 100 μl with a detection limit of 2.5×10−7 mol l−1. R.S.D. of 0.92% for 50 successive injections of 4×10−6 mol l−1 of salbutamol and a sample throughput of 60 samples per hour were achieved. The method was applied for salbutamol quantification in syrups.  相似文献   

6.
Adrenaline was found to inhibit strongly the electrochemiluminescence (ECL) from the Ru(bpy)32+/tripropylamine system when a working Pt electrode was maintained at 1.05 V (versus Ag/AgCl) in pH 8.0 phosphate buffer. On this basis, a flow injection (FI) procedure with inhibited electrochemiluminescence detection has been developed for determination of adrenaline. The method exhibited a good reproducibility, sensitivity, and stability with a detection limit (signal-to-noise ratio = 3) of 7.0×10−9 mol l−1 and dynamic concentration range of 2×10−8 to 1×10−4 mol l−1. The relative standard deviation was 2.2% for 1.0×10−6 mol l−1 adrenaline (n=11). The method was successfully applied to the determination of adrenaline in pharmaceutical samples. Moreover, ECL emission spectra, UV-Vis absorption spectra and cyclic voltammograms of Ru(bpy)32+/tripropylamine/adrenaline were studied. The inhibition mechanism has been proposed as the interaction of electrogenerated Ru(bpy)32+* and the o-benzoquinone derivatives, adrenochrome and adrenalinequinone, at the electrode surface.  相似文献   

7.
Santini AO  Pezza HR  Pezza L 《Talanta》2006,68(3):636-642
The characteristics, performance, and application of an electrode, namely Pt|Hg|Hg2(DCF)2|graphite, where DCF stands for diclofenac ion, are described. This electrode responds to diclofenac with sensitivity of (58.1 ± 0.8) mV/decade over the range 5.0 × 10−5 to 1.0 × 10−2 mol l−1 at pH 6.5-9.0 and a detection limit of 3.2 × 10−5 mol l−1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for diclofenac in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used to determine diclofenac in pharmaceutical preparations by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedures.  相似文献   

8.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(PABzt)2| graphite, where PABzt stands for p-aminobenzoate ion, are described. This electrode responds to PABzt with sensivity of (58.1±1.0) mV per decade over the range 1.0×10−4 to 1.0×10−1 mol l−1 at pH 6.5-8.0 and a detection limit of 3.2×10−5 mol l−1. The electrode shows easy construction, fast response time (within 10-30 s), low-cost, and excellent response stability (lifetime greater than 6 months, in continuous use). The proposed sensor displayed good selectivity for p-aminobenzoate in the presence of several substances, especially, concerning carboxylate and inorganic anions. It was used to determine p-aminobenzoate in pharmaceutical formulations by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by an HPLC procedure.  相似文献   

9.
Two enantioselective, potentiometric membrane electrodes based on α- and γ-cyclodextrins were proposed for the assay of R-baclofen. The slopes of the electrodes were 59.50 and 51.00 mV/pR-baclofen for α- and γ-cyclodextrin-based electrodes, respectively. The detection limits of the proposed electrodes were 7 × 10−9 mol l−1 for α-cyclodextrin-based electrode and 1.44 × 10−10 mol l−1 for γ-cyclodextrin-based electrode. The enantioselectivity was determined over S-baclofen. The proposed electrodes can be employed for the assay of R-baclofen raw materials and its pharmaceutical formulation, Norton-Baclofen® tablets. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper.  相似文献   

10.
Three enantioselective, potentiometric membrane electrodes (EPMEs) based on macrocyclic glycopeptide antibiotics—vancomycin and teicoplanin (modified or not with acetonitrile)—were proposed for the determination of l- and d-enantiomers of methotrexate (Mtx). The linear concentration ranges for the proposed enantioselective membrane electrodes were between 10−6 and 10−3 mol l−1 for l- and d- methotrexate. The slopes of the electrodes were 58.00 mV/pl-Mtx for vancomycin-based electrode; 57.60 mV/pd-Mtx for teicoplanin-based electrode and 55.40 mV/pd-Mtx for teicoplanin modified with acetonitrile-based electrode. The detection limits of the proposed electrodes were of 10−8 mol l−1 magnitude order. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper. All proposed electrodes proved to be successful for the determination of the enantiopurity of Mtx as raw material and of its pharmaceutical formulations (tablets and injections).  相似文献   

11.
Di J  Bi S  Zhang F 《Talanta》2004,63(2):265-272
The electrochemical behavior of maltol on a glassy carbon (GC) electrode was investigated. The results were applied to differential pulse voltammetric determination of maltol in beverages pretreated by ultrafiltration. Under the optimum experimental conditions, the linear range is 1×10−5 to 6×10−4 mol l−1 maltol and the relative standard deviation for 0.4 mmol l−1 maltol is 0.6% (n=9). The detection limit was 5 μmol l−1. Furthermore, silica sol-gel film on GC electrode could be used as suitable selective membrane, which integrated selective membrane on the electrode and substituted for the pretreatment of ultrafiltration. Under the above conditions, maltol was determined by semi-differential linear sweep voltammetry at a silica sol-gel modified GC electrode in the concentration range of 5×10−6 to 5×10−4 mol l−1. The detection limit was 2 μmol l−1 and the relative standard deviation for 0.1 mmol l−1 maltol was 0.7% (n=7). The proposed method is of sensitivity, simplicity, rapidness and no contamination. It had been applied to the direct determination of maltol in beverages such as grape wines, drinks and beers without any pretreatment. The results obtained with the present method were satisfactory with those obtained by spectrophotometry. It could be used as a simple and practical method for the determination of the flavor enhancer maltol in beverages.  相似文献   

12.
In order to determine the enantiopurity of l-carnitine three enantioselective, potentiometric membrane electrodes were proposed for the assay of l-carnitine. The electrodes were designed using macrocyclic glycopeptide antibiotics—vancomycin and teicoplanin. Acetonitrile was added to the teicoplanine to design a modified teicoplanine based electrode. The linear concentration ranges for the proposed enantioselective membrane electrodes were 10−4 to 10−2 mol l−1 for electrodes based on vancomycin and teicoplanin and 10−5 to 10−2 mol l−1 for electrode based on teicoplanin modified with acetonitrile. The slopes of the electrodes were 56.5 mV per pl-carnitine; 54.5 mV per pl-carnitine and 58.3 mV per pl-carnitine for vancomycin-, teicoplanin- and teicoplanin modified with acetonitrile-based electrodes, respectively. The enantioselectivity was determined over d-carnitine. The proposed electrodes could be employed reliably for the assay of l-carnitine raw material and its pharmaceutical formulation, Carnilean® capsules. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper.  相似文献   

13.
A sensitive method is described for the determination of trace bismuth based on the bismuth-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). The overall analysis involved a three-step procedure: accumulation, reduction, and anodic stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, a 0.30 mol l−1 HCl solution containing 2.0×10−5 mol l−1 BPR as supporting medium; accumulation potential and time, −0.10 V, 3 min; reduction potential and time, −0.35 V, 60 s; scan rate 100 mV s−1; scan range from −0.35 to 0.15 V. It was found that the Bi(III)-BPR complex could be accumulated on the electrode surface during the accumulation period. Then the Bi(III) in the Bi(III)-BPR complex on the CPE surface was reduced to Bi(0) during reduction interval and finally reoxidized during the anodic stripping step for voltammetric quantification. Factors affecting the accumulation, reduction, and stripping steps were investigated. Interferences by other ions were studied as well. The detection limit was found to be 5×10−10 mol l−1 with a 3 min accumulation time. The linear range was from 1.0×10−9 to 5.0×10−7 mol l−1. Application of the procedure to the determination of bismuth in water and human hair samples gave good results.  相似文献   

14.
Tue-Ngeun O  Jakmunee J  Grudpan K 《Talanta》2005,68(2):459-464
A novel stopped flow injection—amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200 mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55 ± 0.5 °C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2 × 10−6-6.0 × 10−5 mol l−1and 6.0 × 10−5-6.0 × 10−4 mol l−1. A sample throughput of 25 h−1 was accomplished. Relative standard deviation was 2% (n = 21, 1.2 × 10−4 mol l−1 chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.  相似文献   

15.
This work describes the construction of a polyallylamine modified tubular glassy carbon electrode and its application in the electroreduction of food azo colorants (tartrazine, sunset yellow and allura red) by square wave voltammetry. The electrode modification prevented the surface fouling and, simultaneously, enhanced the analytical signal intensity. The developed unit was coupled to a multicommutated flow system which, given the complexity of samples, was designed to allow the implementation of the standard additions method in an automatic way, using only one standard solution.The described method presented a linear range up to about 2.0 × 10−4 mol l−1 for the referred colorants, with a detection limit of 1.8 × 10−6 mol l−1 for tartrazine, 3.5 × 10−6 mol l−1 for sunset yellow and 1.4 × 10−6 mol l−1 for allura red. The method was applied in the analysis of these colorants in several food samples, and no statistically significant difference between the results obtained by the proposed and the comparative method (HPLC) was found, at a 95% confidence level. Repeatability in the analysis of samples (expressed in R.S.D.) was about 3% (n = 10).  相似文献   

16.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

17.
Li F  Pang YQ  Lin XQ  Cui H 《Talanta》2003,59(3):627-636
Two maximal potential-resolved flow injection-electrochemiluminescent (FI-ECL) peaks were observed for Ru(bpy)32+/TPrA system at 0.90 and 1.05 V, and for Ru(phen)32+/TPrA at 1.01 and 1.25 V (vs. Ag/AgCl) in pH 8.0 phosphate buffer solutions. Sensitive ECL inhibition effects were observed in the presence of noradrenaline and dopamine for both of these systems. Therefore, an FI-ECL inhibition method for determination of noradrenaline and dopamine has been developed. Under optimal conditions, linear responses between logarithm of ECL intensity changes and logarithm of sample concentration were found for noradrenaline in the linear range (LR) of 4×10−8-1×10−5 mol l−1 with theoretical detection limit (DL) of 2.5×10−8 mol l−1 for Ru(bpy)32+/TPrA system, and in LR of 2×10−8-2×10−5 mol l−1 with DL of 7.1×10−9 mol l−1 for Ru(phen)32+/TPrA system; and for dopamine in LR of 8×10−8-2×10−5 mol l−1 with DL of 5.2×10−8 mol l−1 for Ru(bpy)32+/TPrA system, in LR of 4×10−8-2×10−5 mol l−1 with DL of 1.5×10−8 mol l−1 for Ru(phen)32+/TPrA system. It was applied for determination of commercial pharmaceutical injection samples with satisfied results. The mechanism of the inhibition effects was proposed in the preliminary way.  相似文献   

18.
A flow-injection chemiluminescence (CL) method is described for the determination of fluoroquinolones including ciprofloxacin, norfloxacin and ofloxacin. The method is based on the enhancement by these compounds of the weak CL from peroxynitrous acid. The linear ranges are 1.0×10−7 to 1.0×10−5 mol l−1 for ciprofloxacin and norfloxacin, and 3.0×10−7 to 3.0×10−5 mol l−1 for ofloxacin, respectively. The detection limits (S/N=3) are 4.5×10−8 mol l−1 ciprofloxacin, 5.9×10−8 mol l−1 norfloxacin and 1.1×10−7 mol l−1 ofloxacin, respectively. The proposed method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

19.
Simple and sensitive DNA sensors have been developed on a base on graphite screen-printed electrodes modified with DNA and enzymes. Cholinesterase and peroxidase immobilized by treatment with glutaraldehyde were used for the detection of human DNA antibodies of systemic lupus erythematosus and bronchial asthma patients. The amperometric signal was measured at +680 mV versus Ag/AgCl for DNA-cholinesterase sensor and −150 mV for DNA-peroxidase sensor 5 min after the injection of acethylthiocholine and hydroquinone, respectively. The addition of serum samples results in the sharp decrease of the signal due to the formation of DNA-antibody adducts followed by the suppression of the access of substrate to the enzyme active site. Sulfonamide medicines suppress the DNA-antibody interaction due to the competitive binding along DNA minor grooves. DNA sensor labeled with peroxidase showed the linear calibration range of 5×10−9 to 7×10−5 mol l−1 of sulfamethoxazole and of 5×10−8 to 1×10−4 mol l−1 of sulfathiazole.  相似文献   

20.
Three main types of creatinine potentiometric membrane sensors are described. They are based on the use of dibenzo-30-crown-10 (DB30C10) with potassium tetrakis(p-chlorophenyl)borate type (I), dibenzo-30-crown-10 alone type (II), and potassium tetrakis(p-chlorophenyl)borate alone type (III), incorporating in poly(vinyl chloride) matrix membrane plasticized with either o-nitrophenyl octyl ether or dioctylphthalate. The sensors are used for quantification of creatinine after soaking the membranes in 0.1 M creatinine solution for 2 days. The sensors show almost the same potentiometric response characteristics. Sensor type (I) exhibits Nernstian responses over a concentration range of 5.0 × 10−5 mol l−1-1.0 × 10−2 mol l−1 creatinine with cationic slopes of 59.5 ± 0.1 and 60 ± 0.2 mV decade−1 and detection limits of 1.1 × 10−5 mol l−1 and 8 × 10−6 mol l−1 creatinine, over the pH range of 3.5-6.5 and 3.5-7.0, for o-NPOE and DOP solvent mediators, respectively. Sensor type (II) displays Nernstian responses over a concentration range of 6.0 × 10−5 mol l−1-1.0 × 10−2 mol l−1 creatinine with cationic slopes of 60.0 ± 0.1 and 65.0 ± 0.2 mV decade−1 and detection limits of 1.5 × 10−5 mol l−1 and 1.4 × 10−5 mol l−1 creatinine over the pH range of 2.6-6.2 and 2.5-6.0, for o-NPOE and DOP solvent mediators, respectively. Sensor type (III) shows Nernstian responses over a concentration range of 7.0 × 10−5 mol l−1-1.0 × 10−2 mol l−1 creatinine with cationic slopes of 60 ± 0.1 and 62.0 ± 0.2 mV decade−1 and detection limits of 2.7 × 10−5 mol l−1 and 2.0 × 10−5 mol l−1 creatinine over the pH range of 2.5-6.0, for o-NPOE and DOP solvent mediators, respectively. The response times of the sensors for 10−3 mol l−1 creatinine solution are instantaneous (4-10 s). The sensors show long-term stability with life span of ∼6 months. The sensors are used for determination of serum creatinine of rats (Rattus Norvigicus) with mean R.S.D. of 2.62%, and the results agreed well with the Jaffe kinetic method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号