首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Utilization of ferric chelate complex of trans-1,2-cyclohexanediaminetetraacetic acid (CDTA) for the oxidative scrubbing of H2S and CH3SH in Kraft mill streams can be beneficial from the standpoints of iron protection against precipitation and oxygen-mediated regenerative oxidation of the ferrous chelate CDTA. The physical solubility of methyl mercaptan in CDTA–Fe(III) complex cannot be measured directly because of oxidation of the sulfur-bearing gaseous species with the ferric chelate. Therefore, this investigation was carried out to determine the gas–liquid partition coefficients and Henry's law constants of methyl mercaptan in aqueous iron-free CDTA solutions and non-reacting ferrous chelate solutions (CDTA–Fe(II) complex), using the static headspace method with an estimated accuracy of about 2%. Experiments with aqueous solutions of chelate concentrations varying between 38 and 300 mol m−3 were carried out at temperatures between 298 and 333 K and atmospheric pressure. It was shown that the methyl mercaptan solubility decreases with increasing temperature for all systems but was not much influenced, in the studied conditions, by the chelate concentration especially at larger temperatures.  相似文献   

2.
X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer’s claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.  相似文献   

3.
《Analytical letters》2012,45(1):81-91
ABSTRACT

Only the simultaneous analysis of the amount of Fe2? and the possible presence of Fe3+ in ferrous sulfate heptahydrated (FeSO4. 7 H2O) can guarantee covered tablets, drops or syrups with insured quality. This work suggests that these analysis are accomplished through spectrophotometric method by use of the 1, 10-phenanthroline as chelate. Thus, at 510 nm the absorption is only due to the complex of the ligand with Fe2? and at 390 nm the absorption is indicative of Fe2+/3+ coordinated. Pharmaceutical raw matter and covered tablets were analyzed. Techniques of thermogravimetric analysis (TG-DTG) were used for the knowledge of the regions of loss of water of the FeSO4. 7 H2O for the relationship to its stoichiometry.  相似文献   

4.
在妇女、孕妇中,有些由于失血而失铁或孕期中对铁的需要量较大,易造成缺铁性贫血。如果合理利用铁制剂进行治疗,均能收到满意的疗效。本文用强力铁,肝铁片、硫酸亚铁三种铁制剂进行疗效比较。  相似文献   

5.
Summary A very sensitive electrochemical stripping procedure for trace measurements of iron(III) is described. The chelate of iron with Solochrome Violet RS is adsorbed on the hanging mercury drop electrode, and the reduction current of the accumulated chelate is measured by voltammetry. The adsorption and redox behaviours are explored by cyclic voltammetry. The height of the chelate peak, which is about 0.28 V more negative than the peak of the free dye, is shown to be proportional to the iron concentration. Optimal experimental conditions include a preconcentration potential of –0.40 V, solution pH of 5.1 and a linear scan mode. The sharp chelate peak, associated with the effective interfacial accumulation, coupled with the flat baseline, facilitates measurements at the nanomolar and submicromolar concentration levels using short preconcentration times. The limit of detection after 1 min preconcentration is 0.04 gl–1 (7 × 10–10 M), and the relative standard deviation at the 10–7 M level is 4.7%. The effects of possible interferences, due to coexisting metal ions or organic surfactants, are evaluated. The ability of measuring iron(III) in the presence of iron(II) is illustrated. Actual analyses of sea and tap waters are reported.
Chelat-Adsorption für voltammetrische Spurenanalyse von Eisen(III)
  相似文献   

6.
Steger HF 《Talanta》1979,26(6):455-460
A pseudo-kinetic method has been developed for determining the ferrous and ferric iron in the water-soluble oxidation products of pyrrhotite, pyrite and chalcopyrite, and ores and concentrates containing them. Two determinations are required for each material. In one, the total iron is determined with 1,10-phenanthroline after reduction to Fe(II). In the other, the reduction of Fe(III) is retarded by complexation with fluoride. The difference in the amount of ferrous phenanthranoline complex produced in these two determinations is a function of the original FE(III) concentration and of time.  相似文献   

7.
The thermal decomposition of iron(III) benzoate, Fe(C7H5O2)3, and iron(III) fumarate pentahydrate, Fe2(C4H2O4)3 5 H2O, containing uni- and bidentate ligands, respectively, has been investigated at various temperatures for different intervals of time in a static air atmosphere. Thermolysis of these compounds leads directly to the formation of α-Fe2O3 in the case of iron(III) benzoate and Fe3O4 in the case of iron(III) fumarate as the ultimate products, thus without undergoing reduction to the iron(II) state.  相似文献   

8.
Summary An analysis of the iron state in commercial pharmaceuticals containing ferric and ferrous iron compounds, which are used for treatment of iron deficiency, was made by M?ssbauer spectroscopy. Small variations of the FeOOH cores of injectable iron-dextran complexes were observed. The presence of ferrous impurity in iron-dextran complexes was found. Characterization of the iron state in vitamins and dietary supplements containing ferrous compounds was made. The presence of ferrous and ferric impurities and iron compounds that were in disagreement with compounds announced by the manufacturer was detected by M?ssbauer spectroscopy.  相似文献   

9.
In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R2 > 0.999) and low detection limit (0.06 μg L−1) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols.  相似文献   

10.
Tridentate chelate ligands of 2,6-bis[hydroxy(methyl)amino]-1,3,5-triazine family rapidly release iron from human recombinant ferritin in the presence of oxygen. The reaction is inhibited by superoxide dismutase, catalase, mannitol and urea. Suggested reaction mechanism involves reduction of the ferritin iron core by superoxide anion, diffusion of iron(II) cations outside the ferritin shell, and regeneration of superoxide anions through oxidation of iron(II) chelate complexes with molecular oxygen.  相似文献   

11.
Bromazepam, in the form of a cationic iron(II) chelate, can be determined spectrophotometrically at 588 nm with a limit of detection of ca. 10-6 M. When this chelate is ion-paired with perchlorate, it can be extracted into organic solvents such as 1,2-dichloroethane and 4-methyl-2-pentanone, and determined by atomic absorption spectrometry with a limit of detection of 1.5 × 10-5 M bromazepam at the iron resonance 248.3-nm line. Ion-pairs involving the Fe(II), Cu(II) and Co(II) chelates and perchlorate can be separated by h.p.l.c. using a C18 reverse-phase column and a mobile phase of 4:1 water—methanol, with a u.v. detector at 242 nm. This approach allowed for the determination of iron(II) ions in aqueous solution with a limit of detection of 10-8 M. The h.p.l.c. method could also be used to quantify bromazepam spiked in plasma in the concentration range 1–10 μg ml-1, following extraction of bromazepam from plasma and subsequent formation of the iron(II) ion-pair. Copper(II) forms a labile chelate with bromazepam in pH 4.8 acetate buffer which, when subjected to differential pulse voltammetry at the hanging mercury drop electrode, gives rise to a catalytic phenomenon which can be utilised for the determination of bromazepam in the concentration range 10-5–10-9 M.  相似文献   

12.
Oxo-centered trinuclear mixed-valence iron fumarate [Fe3O(O2CCH=CHCO2)3(H2O)3]·nH2O and iron malonate [Fe3O(O2CCH2CO2)3(H2O)3] have been prepared and studied by variable temperature Mössbauer spectroscopy. Iron fumarate complex showed a temperature dependent valence delocalization process. At 6 K two quadrupole split doublets corresponding to high-spin Fe(III) and high-spin Fe(II) state with an area ratio of 2:1 were observed and at 298 K there was only an averaged singlet peak. On the other hand malonate complex showed a localized valence state of high-spin Fe(III) and Fe(II) from low temperature to room temperature only with a slight variation in area ratio and spectral line broadening for Fe(II).  相似文献   

13.
Rate constants of reactions of ozone with glyoxal, glyoxylic and formic acid in aqueous solutions at pH 1.5 were determined. It was shown that iron(III) in the form of ions accelerates oxidation of glyoxal and glyoxylic acid, but does not influence reaction between ozone and formic acid. It was established that the catalyst acts effectively if its concentration is comparable to the concentration of the oxidized substrate, the optimal stoichiometric ratio (Fe3+/substrate) being close to 1/3. The catalytic reaction mechanism was studied using a competitive chelate ligand, oxalic acid. We concluded that the catalytic activity of iron(III) in the investigated reaction was due to its ability to form chelate complexes in which the substrate was more easily oxidized by molecular ozone.  相似文献   

14.
The reductive dehydration of iron hydroxide (FeOOH) by iron metal in aqueous solutions of ferrous sulphate was found to occur. These reactions of α, β, γ FeOOH and Fe(OH)3 · nH2O respectively were carried out in 0.01–1 mol iron(II) sulphate solutions and over the temperature range of 80–100°C to produce Fe3O4 in all cases. The reaction rate decreases with increasing Fe2+ concentration and depends on the total concentration of sulphate anion. The presence of iron(II) chloride has an inhibiting effect.  相似文献   

15.
Quinolinic acid forms two complexes with ferrous ion. One is formed at pH 5.9 and has maximum absorption at 420 mμ; the metal to reagent ratio is 1:2 and the instability constant is about 7.10-9. The other complex is formed with an excess of potassium cyanide and shows maximum absorption at 440 mμ; the metal to reagent ratio is 1:1 the instability constant is only 2.73?10-5. The latter complex adheres to Beer's law from 1 to 16 p.p.m. of iron, and its optimum concentration range is 4-16 p.p.m. of iron, where the percent relative error per 1% absolute photometric error is only 2.94.The reagent is highly specific and can be used spectrophotometrically for the determination of very small quantities of iron in presence of many cations.  相似文献   

16.
Summary Ferrous and ferric complexes of 2,4-dithiobiuret (Dtb) of the type Fe(Dtb)m Xn where m, n = 1-3, and X = CI, Br, I and SO 4 2– , and a neutral Fe(Dtb-H)2 complex have been synthesized and characterised by elemental analyses, magnetic susceptibility, i.r., electronic and Mössbauer spectroscopic studies. From its i.r. spectrum Dtb was found to act as a S,S-coordinating bidentate chelate. The magnetic moment, electronic and Massbauer spectra are consistent with a low spin distorted octahedral structure for the ferric complexes and a high spin form for ferrous complexes.  相似文献   

17.
Jain MP  Kumar S 《Talanta》1982,29(1):52-53
Iron is determined by precipitation as the reddish orange ferrous complex of salicylaldehyde hydrazone (SH) in the pH range 10.0-11.0. With ferric iron an unstable complex is formed which changes readily to the stable ferrous complex. The iron complex has a metal-ligand ratio of 1:2, contradicting the 1:3 ratio reported earlier. The reagent can be used for separation of iron from several ions.  相似文献   

18.
Iron(II) and copper(II) ions are determined simultaneously in a simple manifold by using a multichannel photodiode-array detector. 1-(2-Pyridlazo)-2-hydroxy-7-sulfonaphthalene (PAN-7S) is used as the sole chromogenic reagent. The absorbance at 550 nm is related to the PAN-7S chelates of iron(II) and copper(II)and that at 764 nm to the iron(II) chelate alone. Calibrations are linear over the range 0–8.0 x 10?6 M for each metal. Interference from zinc is avoided by addition of nitrilotriacetic acid; nickel interferes. Appliation to the determination of iron and copper ions in blood serum is discussed.  相似文献   

19.
Bioactive compounds in fruit and vegetables influence each other’s antioxidant activity. Pure standards, and mixtures of the common plant compounds, namely ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside (sum 0.3 mM), in the presence and absence of iron, were analyzed pre- and post-thermal processing in an aqueous solution. Antioxidant activity was measured by total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (TEAC) radical-scavenging assays. Ionic ferrous iron (Fe2+) and ferric iron (Fe3+) were measured photometrically. For qualification and quantification of reaction products, HPLC was used. Results showed that thermal processing does not necessarily lead to a decreased antioxidant activity, even if the compound concentrations decreased, as then degradation products themselves have an antioxidant activity. In all used antioxidant assays the 2:1 ratio of ascorbic acid and 5-caffeoylquinic acid in the presence of iron had strong synergistic effects, while the 1:2 ratio had strong antagonistic effects. The pro-oxidant iron positively influenced the antioxidant activity in combination with the used antioxidants, while ferrous iron itself interacted with common in vitro assays for total antioxidant activity. These results indicate that the antioxidant activity of compounds is influenced by factors such as interaction with other molecules, temperature, and the minerals present.  相似文献   

20.
A solvent extraction method was employed to determine ferrous and ferric iron in aqueous samples. Fe3+ is selectively extracted into the organic phase (n-heptane) using HDEHP (bis(2-ethylhexyl) hydrogen phosphate) and is then stripped using a strong acid. After separation, both oxidation states and the total iron content were determined directly by ICP-MS analysis. This extraction method was refined to allow determination of both iron oxidation states in the presence of strong complexing ligands, such as citrate, NTA and EDTA. The accuracy of the method was verified by crosschecking using a refinement of the ferrozine assay. Presented results demonstrate the ability of the extraction method to work in a microbiological system in the presence of strong chelating agents following the bioreduction of Fe3+ by the Shewanella alga BrY. Based on the results we report, a robust approach was defined to separately analyze Fe3+ and Fe2+ under a wide range of potential scenarios in subsurface environments where radionuclide/metal contamination may coexist with strongly complexing organic contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号