首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

3.
The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l−1 and cerium sulfate was 1.6 mmol l−1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l−1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.  相似文献   

4.
A new method is proposed for the chemiluminescent determination of the pesticide 3-indolyl acetic acid by means of an flow injection analysis system. The chemiluminescence emission is obtained by oxidation of the analyte with Ce (IV) in nitric acid and presence of β-cyclodextrine.The continuous-flow method allows the determination of 159 samples h−1 of 3-indolyl acetic acid in an interval of concentrations over the range 0.5-15.0 mg l−1. The limit of detection was 0.1 μg l−1 and the R.S.D. (n, 17) at 2.0 mg l−1 of the pesticide level was 2.7%. The method was applied to water samples.  相似文献   

5.
An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l−1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REPCu(II) = 0.85% and REPNi(II) = 0.79%. The standard deviations of the repeatability (sr) and of the within-laboratory reproducibility (sw) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l−1, respectively: sr[Cu(II)] = 0.039 mg l−1, sr[Ni(II)] = 0.044 mg l−1, sw[Ni(II)] = 0.045 mg l−1 and sw[Ni(II)] = 0.050 mg l−1. The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na2S concentrations and the reaction temperature on the analytical sensitivity is discussed.  相似文献   

6.
A simple flow-based procedure with chemiluminescence (CL) detection is proposed for bromide ion determination in seawater. The procedure was based on the oxidation of bromide to bromine by chloramine-T followed by the reaction of bromine with luminol resulting in CL emission. Since no significant reaction within chloramine-T and luminol was observed, the detection was carried out without bromine extraction from the oxidant medium. The proposed flow system had a sampling rate of 40 determinations per hour, reagents consumption of 100 μg luminol and 60 μg chloramine-T per determination, a limit of detection of 0.5 mg l−1 bromide ions, a linear concentration range (r = 0.999 and n = 7) between 0 and 100 mg l−1, and a coefficient of variance better than 2.5% (for 10 measurements of a 10 mg l−1 Br solution) were achieved. The analytical system was applied for the determination of bromide in seawater and estuarine-water samples, obtaining an analyte recovery ranging from 94 to 102% and comparing the results with a reference spectrophotometric method no significant difference was observed in 95% confidence level.  相似文献   

7.
A flow-injection chemiluminescence (CL) method is described for the determination of fluoroquinolones including ciprofloxacin, norfloxacin and ofloxacin. The method is based on the enhancement by these compounds of the weak CL from peroxynitrous acid. The linear ranges are 1.0×10−7 to 1.0×10−5 mol l−1 for ciprofloxacin and norfloxacin, and 3.0×10−7 to 3.0×10−5 mol l−1 for ofloxacin, respectively. The detection limits (S/N=3) are 4.5×10−8 mol l−1 ciprofloxacin, 5.9×10−8 mol l−1 norfloxacin and 1.1×10−7 mol l−1 ofloxacin, respectively. The proposed method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

8.
This study reports a sensitive solvent extraction flow-injection (FI) method for the simultaneous spectrophotometric determination of free cyanide and thiocyanate in human saliva and pralidoxime solutions. Cyanide and thiocyanate form colored (λmax=540 nm) ternary complexes with copper and 2,2′-dipyridyl-2-quinolylhydrazone (DPQH) that are extractable into chloroform. The determination of thiocyanates in the presence of cyanides is accomplished after on-line masking of the latter with formaldehyde through a binary inlet static mixer (BISM). Total thiocyanates and cyanides are determined in a second run, without the use of the masking agent. The proposed method allows the determination of the analytes in the range of 0-4 mg l−1 thiocyanates and 0-3 mg l−1 cyanides, with the 3σ detection limits being 0.007 and 0.004 mg l−1, respectively. The precision of the method (sr<1.0% at 1 mg l−1 CN or SCN, n=12 in both cases) and the sampling rates were quite satisfactory (60 injections per hour). The method was applied to the analysis of human saliva and pralidoxime solutions and gave recoveries in the range of 98.0-102.2% for both analytes whereas the mean relative error was er=1.7%.  相似文献   

9.
Fotini S. Kika 《Talanta》2007,71(3):1405-1410
The present work reports the first sequential injection (SI) method for the spectrophotometric determination of Ti(IV). The method is based upon the reaction of Ti(IV) with chromotropic acid (CA) in acidic medium to form a water-soluble complex (λmax = 420 nm). The chemical and instrumental variables of the system that affected the reaction were studied. Selectivity was greatly enhanced using ascorbic acid. A linear calibration graph was obtained in the range 0.2-10.0 mg l−1 Ti(IV) at a sampling frequency of 24 h−1. The precision was satisfactory (sr = 1.5% at 5.0 mg l−1 Ti(IV), n = 12) and the 3σ limit of detection, cL, was 0.7 mg l−1 (n = 10). The developed method proved to be adequately selective and was applied successfully to the analysis of real samples (dental implant and natural Moroccan phosphate rock) giving accurate results based on recovery studies (98-105%).  相似文献   

10.
A multicommuted flow system is proposed for spectrophotometric determination of hydrosoluble vitamins (ascorbic acid, thiamine, riboflavine and pyridoxine) in pharmaceutical preparations. The flow manifold was designed with computer-controlled three-way solenoid valves for independent handling of sample and reagent solutions and a multi-channel spectrophotometer was employed for signal measurements. Periodic re-calibration as well as the standard addition method was implemented by using a single reference solution. Linear responses (r=0.999) were obtained for 0.500-10.0 mg l−1 ascorbic acid, 2.00-50.0 mg l−1 thiamine, 5.00-50.0 mg l−1 riboflavine and 0.500-8.00 mg l−1 pyridoxine. Detection limits were estimated as 0.08 mg l−1 (0.5 μmol l−1) ascorbic acid, 0.8 mg l−1 (2 μmol l−1) thiamine, 0.2 mg l−1 (0.5 μmol l−1) riboflavine and 0.1 mg l−1 (0.9 μmol l−1) pyridoxine at 99.7% confidence level. A mean sampling rate of 60 determinations per hour was achieved and coefficients of variation of 1% (n=20) were estimated for all species. The mean reagent consumption was 25-fold lower in relation to flow-based procedures with continuous reagent addition. Average recoveries between 95.6 and 100% were obtained for commercial pharmaceutical preparations. Results agreed with those obtained by reference methods at 95% confidence level. The flow system is suitable for application in quality control processes and in dissolution studies of vitamin tablets.  相似文献   

11.
A spectrophotometric method is reported for the determination of bismuth in pharmaceutical products using sequential injection analysis. Methylthymol blue (MTB) was used as a color forming reagent and the absorbance of the Bi(III)-MTB complex was monitored at 548 nm. The various chemical and physical variables that affected the reaction were studied. A linear calibration graph was obtained in the range 0.0-75.0 mg l−1 Bi(III) at a sampling frequency of 72 h−1. The reagent consumption was considerably reduced compared to conventional flow injection systems, as only 150 μl of MTB were consumed per run. The precision was very satisfactory (sr=0.5%, at 50.0 mg l−1 Bi(III), n=12) and the limit of detection, cL, was 0.250 mg l−1. The developed method was applied successfully to the analysis of various pharmaceutical products containing Bi(III). The relative errors er, were <1.5% in all cases and were evaluated by comparison of the obtained results with those found using atomic absorption spectrometry as the reference method.  相似文献   

12.
This paper describes the use of a pervaporation (PV) technique in a flow injection (FI) system for selective improvement in iodide analysis. Iodide in the sample zone is oxidized to iodine, which permeates through a hydrophobic membrane. Detection of the diffused iodine is achieved using the chemiluminescent (CL) emission at 425 nm that results from the reaction between iodine and luminol. The method was applied for the analysis of some pharmaceutical products, such as nuclear emergency tablets and multivitamin tablets. Ascorbic acid present in multivitamin samples interfered seriously with the analysis, and off-line sample treatment using anion exchange resin was employed to successfully remove ascorbic acid before the analysis. Ascorbic acid was flushed from the column using 0.4 M sodium nitrate followed by elution of iodide with 2 M sodium nitrate. The detection limit (3S.D.) of the system was 0.5 mg l−1, with reproducibility of 5.2% R.S.D. at 5 mg l−1. Sample throughput was determined as 30 injections h−1. There was good agreement between iodide concentrations from extracted samples determined using four different methods, i.e., PV-FI, gas diffusion-flow injection, potentiometry and ICP-MS. A comparison of the analytical features of the developed pervaporation system with these of the previously reported chemiluminescence gas diffusion-flow injection previously reported is also described.  相似文献   

13.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

14.
Leading-edge urban solid waste ashing plants use burning heat energy to obtain electrical power. Water fed to their boilers for conversion into steam should be highly pure in order to minimize corrosion, scaling and similar phenomena, which can lead to malfunctioning and a reduced useful life but can be avoided by proper management and control of the water supply. In this work, we developed a multiparameter monitor based on multisyringe sequential injection for the sequential determination of up to eight important parameters, namely: pH, specific and acid conductivity, hydrazine, ammonium, phosphate, silicate and total iron.Acid conductivity was determined by passing the sample through a cation-exchange resin in order to retain ammonium ion and release protons. This parameter was deemed the most accurate indicator of dissolved solids in boiler water. Chemical parameters were determined spectrophotometrically: hydrazine by reaction with p-dimethylaminobenzaldehyde, ammonium by the modified Berthelot reaction, iron with o-phenanthroline, and phosphate and silica by formation of a molybdoheteropoly blue dye in the presence of ascorbic acid as reductant. Use of the optimum chemical and physical operating conditions provided 3sblank detection limits of 0.01 mg l−1 N2H4, 0.13 mg l−1 NH4+, 0.04 mg l−1 Fe, 0.03 mg l−1 SiO2 and 0.05 mg l−1 PO43−, and relative standard deviations not greater than 2.5%. The methods integrated in the proposed monitor were successfully applied to real samples from the water-steam cycle at the Son Reus ashing plant in Palma de Mallorca (Spain).  相似文献   

15.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

16.
This paper reports an indirect flow-injection (FI) method for the determination of the anti-hyperthyroid drugs methimazole and carbimazole in pharmaceuticals. The method was based on the inhibition that these thioimidazole drugs caused on the Cu(II)-catalysed chemiluminescence (CL) reaction between luminol and H2O2. The CL reaction was induced on-line and injection of the sample produced negative peaks as a result of the Cu(II) complexation by the analytes. The height of the FI peaks was proportional to the drug concentration in the sample. The linear range was 2-100 and 3-120 mg l−1 for methimazole and carbimazole, respectively. The relative standard deviation was 1.9% for methimazole and 2.1% for carbimazole at the 50 mg l−1 level (n=10). Common excipients present in pharmaceutical tablets were found not to interfere with the analysis. The method was applied to the determination of methimazole and carbimazole in pharmaceutical formulations with recoveries in the range 100±4%.  相似文献   

17.
In this work a method is presented for the enzymatic determination of glucose using fluorescence anisotropy. During the enzymatic reaction a change in the fluorescence anisotropy of the glucose oxidase (GOx) is produced; the reaction time at which this change appears (tm) depends on the glucose concentration. A theoretical study has been developed which enables: (a) the correlation of this change in anisotropy with changes in the intensity and the lifetime of the enzyme fluorescence; from this a model which could be generalized to other flavo-enzymes is proposed; (b) the linking of tm with glucose concentration.After optimisation, the proposed method allows the determination of glucose over the range 100-1000 mg l−1. The detection limit is 90 mg l−1and the reproducibility is better than 4% (n = 6, [glucose] = 250 mg l−1). Anisotropy is more selective than conventional fluorescence intensity, and this method has therefore been applied to direct glucose determination in fruit juices without the interference caused by the inner filter effect.  相似文献   

18.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

19.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

20.
In this study, a multiwavelength UV spectral deconvolution (UVSD) procedure is proposed as a robust and simple procedure for direct estimation of carbon and nitrate contents in soil water extracts. Soil samples were collected from an open-air field cultivated with maize at 3 different depths, 30 cm each, between 0 and 90 cm of soil surface during a period of 7 months. Fractionation of water extractable organic carbon (WEOC) into hydrophobic (Hpo-WEOC), transphilic (Tpi-WEOC), and hydrophilic (Hpi-WEOC) fractions is performed using XAD-8 and XAD-4 resins connected in series. In order to perform UVSD, 3 representative reference spectra of WEOC fractions were selected automatically, in addition to a 4th spectrum representative of NO3 selected manually in order to compose the deconvolution basis. The restitution of UV spectra was made in the range 235-350 nm. Through exploitation of soil water extract UV spectra, it was possible in a single-step deconvolution procedure to determine the organic carbon (mg C l−1) and NO3 (mg l−1) concentrations and to differentiate and to quantitatively estimate carbon content of WEOC fractions. Statistical tests indicated satisfactory correlations between values estimated using UVSD and those determined by conventional reference methods for each parameter determined. The ranges of concentrations of carbon and NO3 in the soil water extracts studied are between 3.00 and 15.00 mg C l−1 and 60-300 mg l−1, respectively. The limits of quantification (LQ) and of detection (LD) of WEOC and NO3 were found to be 0.10 and 0.05 mg C l−1, and 0.10 and 0.03 mg l−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号