首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

2.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

3.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

4.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

5.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

6.
This study describes the functionalization of biopolymer chitosan, using the complexing agent 8-hydroxyquinoline (oxine) by reaction of diazotization. The chelating resin was characterized by degree of deacetylation, infrared, Raman spectroscopy. The efficiency of the chelating resin and accuracy of the proposed method was evaluated by the metal ion recovery technique in the analysis of potable water, lake water, seawater and a certified sample of oyster tissue. The metal ions Cd(II) and Cu(II) in the samples were previously enriched in a minicolumn and flow injection flame atomic absorption spectrometry (FI-FAAS) determined the concentrations of the analytes. The chelating resin exhibited high selectivity for Cd(II) at pH 7 and for Cu(II) at pH 10. The eluent concentration was tested by the use of HNO3 in concentrations of 0.1-3 mol l−1 maximum response was obtained at 0.5 mol l−1 for Cd(II) and Cu(II), with R.S.D. values of 0.4%. The analytes gave relative standard deviations (R.S.D.) of 1.5 and 0.7% for solutions of Cd(II) and Cu(II), respectively (n = 7) containing 20 μg l−1 of the metal ions, defining a high reproducibility. The limits of detection (LOD) were 0.1 μg l−1 for Cd(II) and 0.4 μg l−1 for Cu(II). The analytical properties of merit were obtained using the parameters previously optimized with preconcentration time of 90 s. The chelating resin showed chemical stability within a wide range of pH and the efficiency was not altered for the preconcentration of the metal ions during all the experiments.  相似文献   

7.
5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,26-dihydroxy-27,28-crown-4-calix[4]arene in the cone conformation was synthesized. This p-tert-butylcalix[4]arene-1,2-crown-4 compound was then anchored with Merrifield chloromethylated resin beads. The modified polymeric resin was characterized by 1H NMR, FT-IR and elemental analysis and used successfully for the separation and preconcentration of Cu(II), Cd(II), Co(II), Ni(II) and Zn(II) prior to their determination by FAAS. Effective extraction conditions were optimized in both batch and column methods. The resin exhibits good separating ability with maximum between pH 6.0-7.0 for Cu(II), pH 6.0 for Cd(II), pH 5.0 for Co(II), pH 4.0-4.5 for Ni(II), and pH 4.5 for Zn(II). The elution studies were carried out with 0.5 mol L−1 HCl for Cu(II), Co(II) and Co(II), 1.0 mol L−1 HCl for Cd(II) and Zn(II). The sorption capacity, preconcentration factor and distribution coefficient of each metal ion were determined. The detection limits were 1.10, 1.25, 1.83, 1.68 and 2.01 μg L−1 for Cu(II), Cd(II), Co(II), Ni(II) and Zn(II). The influence of several ions on the resin performance was also investigated. The validity of the proposed method was checked for these metal ions in NIST standard reference material 2709 (San Joaquin Soil) and 2711 (Montana Soil).  相似文献   

8.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   

9.
A flow injection on-line sorption system was developed for the separation and preconcentration of traces of Ag, Cd, Co, Ni, Pb, U and Y from natural water samples with subsequent detection by ICP TOF MS. Simultaneous preconcentration of the analytes was achieved by complexation with the chelating reagent 1-phenyl-3-methyl-4-benzoylpyrazol-5-one immobilized on the inner walls of a (200 cm × 0.5 mm) PTFE knotted reactor. The analytes were eluted and transported to an axial ICP TOF MS system with 1% (v/v) HNO3 containing 0.3 μg l−1 of Rh as an internal standard using ultrasonic nebulization. The detection limits (3σ) varied from 0.3 ng l−1 for Y to 15.2 ng l−1 for Ni and the precision (R.S.D.) was better than 4%. Using a loading time of 90 s and a sample flow rate of 4.5 ml min−1, enhancement factors of 3-14 were obtained for the different analytes in comparison with their direct determination by ICP TOF MS with ultrasonic nebulization without preconcentration. The accuracy of the method was demonstrated by analysis of water based certified reference materials.  相似文献   

10.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   

11.
2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff’s base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g−1 and distribution coefficient as log Kd values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g−1 (log Kd 6.6) at pH 1.0 and 2.0. 1.8 mmol g−1 (log Kd 4.25), 1.6 mmol g−1 (log Kd 3.90) and 1.08 mmol g−1 (log Kd 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection limit (3σ) for Hg(II) based on enrichment factor 1000 was 4.75 pg/ml. The precision (R.S.D.) obtained for different amounts of mercury was in the range 0.52-1.01% (N = 3) at the 25-100 ng/l level.  相似文献   

12.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

13.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

14.
Simultaneous vapor generation of zinc (Zn) and cadmium (Cd) was evaluated by atomic fluorescence spectrometry coupled with an intermittent flow vapor generation system. Some complexing reagents, surfactant and transition metal ions were respectively tested as enhancement reagents. Experiments showed that an appropriate amount of 8-hydroxyquinoline or phenanthroline and nickel ion simultaneously, effectively improved the vapor generation efficiency of Zn and Cd. The volatile species generation was presumed to be a hydrogenation process interpreting how the enhancement reagents played an important role in vapor generation. Additionally, due to the instability of volatile species, reaction temperature, rapid and sufficient mixing of reagents and rapid separation of the volatile species from liquid phase were also crucial. The method of simultaneous determination of Zn and Cd by intermittent flow vapor generation led to the development of atomic fluorescence spectrometry. The detection limits (3σb) were 1.6 μg l−1 for Zn and 0.01 μg l−1 for Cd and the relative standard deviations were 3.6% for Zn (50 μg l−1, n=11) and 1.7% for Cd (2 μg l−1, n=11) respectively. Results for the determination of Zn and Cd have been confirmed by the analysis of CRMs with good agreement between the certified and found values.  相似文献   

15.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

16.
In this work, 1,10-phenanthroline was used as a complexing agent for the separation and preconcentration of Cd(II), Co(II), Ni(II), Cu(II) and Pb(II) on activated carbon. The metals were adsorbed on activated carbon by two methods: static (1) and dynamic (2). The optimal condition for separation and quantitative preconcentration of metal ions with activated carbon for the proposed methods was for (1) in the static methods in the pH range 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (92.6%), Co(II) (95.6%), Pb(II) (91.0%), and with 3 mol dm−3 HNO3 for Cd(II) (95.4%), Pb(II) (100.2%). The preconcentration factor was 100 with R.S.D. values between 1.0 and 2.9%. For (2), the dynamic method (SPE), the pH range for the quantitative sorption was 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (100.6%), Pb(II) (94.4%), and reasonably high recovery for Co(II) (83%), Cu(II) (88%). The optimum flow rate of metal ions solution for quantitative sorption of metals with 1,10-phenanthroline was 1-2 cm3 min−1 whereas for desorption it was 1 cm3 min−1. The preconcentration factor was 50 for all the ions of the metals with R.S.D. values between 2.9 and 9.8%.The samples of the activated carbon with the adsorbed trace metals can be determined by ICP-OES after mineralization by means of a high-pressure microwave mineralizer. The proposed method provides recovery for Cd (100.8%), Co (97.2%), Cu (94.6%), Ni (99.6%) and Pb (100.0%) with R.S.D. values between 1.2 and 3.2%.The preconcentration procedure showed a linear calibration curve within the concentration range 0.1-1.5 μg cm−3. The limits of detection values (defined as “blank + 3s” where s is standard deviation of the blank determination) are 5.8, 70.8, 6.7, 24.6, and 10.8 μg dm−3 for Cd(II), Pb(II), Co(II), Ni(II) and Cu(II), respectively, and corresponding limit of quantification (blank + 10s) values were 13.5, 151.3, 20.0, 58.9 and 33.2 μg dm−3, respectively.As a result, these simple methods were applied for the determination of the above-mentioned metals in reference materials and in samples of plant material.  相似文献   

17.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   

18.
A rapid method for the determination of Pb, Cd, Cu, Cr, Co, Ni, Mn and Zn in honey and sugars without prior digestion or ashing of the sample was developed, using inductively coupled plasma atomic emission spectrometry (ICP-AES). The critical instrumental parameters such as sample flow rate and radio frequency incident power were thoroughly optimized. The effect of matrix type and its concentration was also examined for glucose/fructose, sucrose and honey matrices. The sensitivity was investigated using calibration curves obtained in presence of the above matrices. The obtained recoveries for Cd, Cu, Cr, Co, Ni and Mn at the μg l−1 level were satisfactory and practically independent of the matrix used for the calibration standards. The recoveries of Pb and Zn were less sufficient. Various commercial samples of honey, sugar, glucose and fructose were analyzed with respect to their toxic metal content. The method can be applied for routine analysis, quality and environmental pollution control purposes at the μg l−1 level of concentration, after suitable dilution of the samples.  相似文献   

19.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

20.
A fast and inexpensive sensitive screening test for recognising potential wastewater contamination by the presence of highly toxic heavy metals is described. The test is based on the reaction of the toxic heavy metals Hg(II), Cd(II), Pb(II) and Ag(I) with 6-mercaptopurine (6-MP) to produce highly fluorescent complexes.Optimum experimental conditions include a buffer of pH 7.2 (0.1 M citric acid/0.2 M Na2HPO4), a chelating reagent concentration of 6×10−4 M and the addition of 10−4 M of o-phenanthroline. The fluorescence emitted by the complexes was measured at 380 and 540 nm for excitation and emission wavelengths, respectively.Detection limits of 4, 3, 6 and 3 μg l−1 were achieved for Hg, Cd, Pb and Ag. Relative standard deviation (R.S.D.) were between ±2 and ±6% of the fluorescence signals for five identical samples. Potential interference effects from other heavy metals (Zn, Mn, Co, Fe, Ni and Cu), which could affect the response of the proposed screening test was investigated. Results showed that none of these metals give rise to noticeable fluorescence signals under the above described experimental conditions.Finally, the capability of the proposed heavy metal screening test for the analysis of contaminated water samples is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号