首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Badugu R  Lakowicz JR  Geddes CD 《Talanta》2005,66(3):569-574
We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level.Although boronic acid containing probes are known to exhibit pH sensitivity along with an ability for saccharide binding/chelating, the new probes reported here are considered to be unique and show an unperturbed pH response, even in the presence of high concentrations of background saccharide, such as with glucose and fructose, allowing for the predominant pH sensitivity. The response of the probes is based on the ability of the boronic acid group to interact with strong bases like OH, changing from the neutral form of the boronic acid group, R-B(OH)2, to the anionic ester, R-B(OH)3, form, which is an electron donating group. The presence of an electron deficient quaternary heterocyclic nitrogen center and a strong electron donating amino group in the 6-position of the quinolinium backbone, provides for the spectral changes observed upon OH complexation. In addition, by comparing the results obtained with systems separately incorporating 6-methoxy or 6-methyl substituents, the suppressed response towards monosaccharides, such as with glucose and fructose, can clearly be observed for these systems. Finally we compare our results to those of a control compound, BAQ, which does not contain the boronic acid group, allowing a rationale of the spectral changes to be made.  相似文献   

2.
Badugu R  Lakowicz JR  Geddes CD 《Talanta》2005,65(3):762-768
Continuous monitoring of glucose levels in human physiology is important for the long-term management of diabetes. New signaling methods/probes may provide an improved technology to monitor glucose and other physiologically important analytes. The glucose sensing probes, BMQBAs, fabricated using the 6-methylquinolinium moiety as a fluorescent indicator, and boronic acid as a chelating group, may have versatile applications in glucose sensing because of their unique properties. In this paper we discuss the design logic, synthesis, characterization and spectral properties of three new isomeric glucose sensors (BMQBAs), and a control compound (BMQ) in the presence and absence of sugars. The sensing ability of the new probes is based on a charge neutralization and stabilization mechanism upon sugar binding. The new probes have attractive fluorescence quantum yields, are highly water-soluble, and have spectral characteristics compatible with cheap and portable LEDs and LDs. One of the probes, o-BMQBA, has a sugar bound pKa of 6.1, and a dissociation constant KD of 100 mM glucose. These probes have been designed specifically to respond to tear glucose in a contact lens polymer for ophthalmic glucose monitoring, where the reduced sugar bound pKa affords for sensing, in a lens environment that we have previously shown to be mildly acidic.  相似文献   

3.
Using induced cathodic electrodeposition a number of silver chalcogenide thin layer membranes of non-trivial composition have been synthesized and their performance as ion-selective flow-injection potentiometric detectors (FIPDs) for free cyanide has been critically estimated in the context of the stringent requirements for toxic cyanide environmental monitoring. AgSCN/Ag2S, Ag2S, Ag2+δSe, Ag2+δSe1−xTex (0 < δ < 0.25 and x ≈ 0.13), Ag2Se and Ag2Se1−xTex electroplated membranes were selected for the present performance-based comparative study in order to obtain a feedback information about the effect of membrane composition. Both silver selenide and Te-doped silver selenide membranes, irrespective of their stoichiometry with respect to silver, exhibit the lowest detection limit for CN (52 ppb) with linear double-Nernstian response down to 130 ppb. The type of chalcogene anion in the membrane composition proves to exert dominant effect on the general performance characteristics of the newly developed FIPDs. The silver stoichiometry (intrinsic defects factor) and the inclusion of Te-dopant (extrinsic defects factor) have more pronounced effect on the profile of the output signal and exert moderate control on the detectors selectivity and baseline stability. This new generation of CN—ion-selective membranes for FIPDs exhibits high selectivity against the common interferents present in cyanide effluents such as SCN, S2O32−, Cl and do not get poisoned in the presence of S2−. Moreover, their long-term stability and signal reproducibility, which make redundant the regular day-to-day calibration, coupled with the cost-effective technology for membranes preparation and easy re-generation make them attractive candidates for incorporation into automated in-field devices for in situ cyanide toxic species monitoring.  相似文献   

4.
Hanna Lee 《Tetrahedron letters》2008,49(38):5544-5547
A novel fluorescence probe has been synthesized, which consists of o-(carboxamido)trifluoroacetophenone moiety as the recognition element and cyano-1,2-diphenylethylene moiety as the signaling unit. Fluorescence titrations of the probe with anions such as F, Cl, I, CN, SCN, AcO, , , and as their Bu4N+ salts in acetonitrile show that CN is the most efficient quencher, AcO and F follow it, and other anions show little changes. In an aqueous medium, MeOH-water (9:1), the probe shows fluorescence quenching only toward cyanide and no changes toward the other anions.  相似文献   

5.
The design and preparation of stable cyanide-bearing six-coordinate complexes of formula [MIII(L)(CN)x](x + l − m)− (M = trivalent transition metal ion and L = polydentate blocking ligand) are summarized here. Their use as ligands towards either fully hydrated metal ions or coordinatively unsaturated preformed species, to afford a wide variety of low-dimensional metal assemblies whose nuclearity, dimensionality and magnetic properties can be tuned, is also reviewed. Special emphasis is put on the appropriate choice of the end-cap ligand L whose denticity determines the number of coordinated cyanide groups in the mononuclear precursors. Among the different new spin topologies obtained through this rational synthetic strategy, ferromagnetically coupled 4,2-ribbon like bimetallic chains which exhibit slow magnetic relaxation and hysteresis effects (chain as magnets) are one of the most appealing and constitute the heart of the present contribution.  相似文献   

6.
This Letter aimed to develop an efficient method for the determination of cyanide ion (CN). A novel colorimetric chemosensor 4-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1-allylpyridinium bromide (HPEAPB) was synthesized. HPEAPB displayed good selectivity toward CN over other competing anions in ethanol. A color change from yellow to red was immediately observed upon the addition of CN and the limit of detection (LOD) was 3.4 × 10−6 mol L−1. The sensing mechanism was discussed by UV–vis, 1H NMR titration, and a comparison study. Colorimetric test paper for CN was prepared by attaching HPEAPB to a chromatography paper, which could be used to detect CN in environmental samples as simply as a pH-indicator paper for pH value. The LOD of the test paper for CN was 2.0 × 10−4 mol L−1. This detection method for CN has potential applications in cyanide ion containing fields by combination of rapid and real-time advantages.  相似文献   

7.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

8.
A novel flow-injection spectrophotometry has been developed for the determination of molybdenum(VI) at nanograms per milliliter levels. The method is based on the catalytic effect of molybdenum(VI) on the bromate oxidative coupling of p-hydrazinobenzenesulfonic acid with N-(1-naphthyl)ethylenediamine to form an azo dye (λmax = 530 nm). Chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid) acted as an effective activator for the molybdenum(VI)-catalyzed reaction and increased the sensitivity of the method. The reaction was monitored by measuring the change in absorbance of the dye produced. The proposed method allowed the determination of molybdenum(VI) in the range 1.0-20 ng mL−1 with sample throughput of 15 h−1. The limit of detection was 0.5 ng mL−1 and a relative standard deviation for 10 ng mL−1 molybdenum(VI) (n = 10) was 2.5%. The interfering ions were eliminated by using the combination of a masking agent and on-line minicolumn packed with cation exchanger. The present method was successfully applied to the determination of molybdenum(VI) in plant foodstuffs.  相似文献   

9.
The absorption and fluorescence behaviour of trans-p-coumaric acid (trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form (p-CAH2) and the single anionic form (p-CAH) at low pH (pKna ≈ 4.9), and between the single anionic and the double anionic form (p-CA2−) at high pH (pKaa ≈ 9.35). In the organic solvents studied trans-p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans-p-coumaric acid in aqueous solution is ?F ≈ 1.4 × 10−4 for the neutral and the single anionic form, while it is ?F ≈ 1.3 × 10−3 for the double anionic form. For trans-p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10−5 (acetonitrile) to 1.5 × 10−4 (glycerol) were measured. The fluorescence spectra are 7700–10,000 cm−1 Stokes shifted in aqueous solution, and 5400–8200 cm−1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA2−, solvent-assisted intra-molecular charge-transfer or ππ to nπ transfer and internal conversion for p-CAH2 and p-CAH). The solvent dependence of the first ππ electronic transition frequency and of the fluorescence Stokes shift of p-CAH2 is discussed in terms of polar solute–solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.  相似文献   

10.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

11.
The active site of Acetyl CoA Synthase utilizes a square planar NiN2S2 complex in the form of NiII(CGC)2− (CGC = the cysteine-glycine-cysteine tripeptide motif within the protein) to serve as a bidentate sulfur-donor ligand to chelate a second, catalytically active Ni atom responsible for the C-C and C-S coupling reactions for the production of Acetyl CoA. Metalloenzymes, such as this, which house stable catalytic complexes within intricately designed pockets accessible by solvent channels, have inspired design of resin-bound complexes. Through the use of TentaGel S-RAM® resin beads, the O-Ni(CGC)2− ligand has been synthesized and derivatized with the RhI(CO)2 moiety. The identification of the adduct on these resin beads is afforded by attenuated total reflectance FTIR spectroscopy in the ν(CO) region and compared to solution analogues. The goal of this study is to establish a quantitative measure of the loading of nickel and rhodium on the tripeptide modified resin beads, O-(CGC). The extent of CGC derivatization was determined by Fmoc cleavage of the Fmoc protected O-(CGC). Nickel and rhodium loading were determined by Neutron Activation Analysis. This work provides evidence that the TentaGel S-RAM® resin beads greatly decrease the air sensitivity of the Ni-Rh complex as compared to the unsupported solution phase analogue. The derivatized beads have also been studied for their ability to withstand a number of physical stresses, i.e., for leaching.  相似文献   

12.
Stability constants of boronate complexes with a highly efficient bioconjugation ligand salicylhydroxamic acid, its derivatives and some structurally related compounds were determined by potentiometric and spectroscopic titrations at variable pH allowing one to obtain detailed stability – pH profiles and to identify the optimum pH for complexation with each ligand. The N,O‐binding of salicylhydroxamic acid via condensation of boronic acid with phenolic OH and hydroxamic NH groups was established by crystal structure determination of isolated complexes with phenylboronic and 4‐nitrophenylboronic acids. Although this type of binding is impossible for N‐methylated salicylhydroxamic acid it still forms stable boronate complexes supposedly involving unusual 7‐membered –O‐B‐O‐ cycle supported by 1H NMR studies. Hydroxamic acids lacking ortho‐OH group and salicyloyl hydrazide form less stable boronate complexes, which nevertheless possess stabilities similar to those of catechole complexes and may be useful for conjugation applications. In contrast to other ligands, which form tetrahedral anionic complexes, salicylamidoxime forms tetrahedral, but neutral boronate complex with high stability in weakly acid solutions. The highest affinity in neutral and acid solutions surpassing that of salicylhydroxamic acid is observed with 2,6‐dihydroxybenzhydroxamic acid (Kobs = 5.2 × 104 at pH 7.4). Fairly stable mono‐ and bisboronate complexes are formed with 2,5‐dihydroxy‐1,4‐benzdihydroxamic acid, which also possesses intense fluorescence and may serve as a boronic acid sensor with detection limit 4 μM. Results presented in this study provide quantitative basis for rational applications of hydroxamic acid derivatives in bioconjugation and sensing.  相似文献   

13.
Yue Sun 《Talanta》2009,80(2):996-2526
A fluorescent and colorimetric probe bearing salicylaldehyde hydrazone functionality has been prepared for cyanide sensing. The detection of cyanide was performed via the nucleophilic attack of cyanide anion on the imine group of the probe with a 1:1 binding stoichiometry, which could be confirmed by 1H NMR and MS studies. The specific reaction results in a prominent fluorescence enhancement and a color change from colorless to yellow.  相似文献   

14.
[(CH2OH)3CNH3]2SiF6, (tris(hydroxymethyl)aminomethane)2SiF6 crystal, abbreviated as (TRIS)2SiF6 crystal, exhibits a solid-solid phase transition (PT) at 182 K. The phase transition is connected with reorientational motion of SiF62− and -CH2OH groups. The vibrational infrared spectra of powdered (TRIS)2SiF6 crystal in Nujol and Fluorolube mulls were studied in the wide range of temperatures, from 320 K to 133 K. A wide region of internal vibrations of the TRIS+ and SiF62− ions was investigated. Temperature changes of wavenumber, width, centre of gravity, and intensity of bands were analyzed to clarify the molecular mechanism of the phase transitions. Theoretical calculations were made based on density functional theory (DFT). The calculated normal vibrational modes of the molecules, their frequencies and intensities were compared with those obtained from experimental data.  相似文献   

15.
Fluorimetric determination of ascorbic acid with o-phenylenediamine   总被引:1,自引:0,他引:1  
Wu X  Diao Y  Sun C  Yang J  Wang Y  Sun S 《Talanta》2003,59(1):95-99
A simple and sensitive fluorimetric method for the determination of ascorbic acid (AA) is described. The method is based on the condensation reaction between AA and o-phenylenediamine (OPDA) in the absence of the oxidant. The fluorescence intensity is measured at excitation and emission wavelengths of 360 and 430 nm, respectively. Under optimum condition, a linear relationship is obtained between the fluorescence intensity and the concentration of AA in the range of 0.05-40 μg ml−1. The detection limit is 0.006 μg ml−1, which is obviously lower than that of other fluorimetric methods reported.  相似文献   

16.
A series of N-(pyridin-2-yl)picolinamide derivatives was synthesized and characterized. Tetranickel complexes were obtained by stoichiometric reaction of NiBr2 and corresponding ligands, and characterized by elemental and spectroscopic analysis. Moreover, the coordination pattern of complex 3a was confirmed by single-crystal X-ray diffraction. In the structure, two ligands linked two nickel atoms to form a unit, and two units were bridged via μ3-OMe and μ2-Br to form a tetranickel cluster. These Ni(II) complexes were investigated in ethylene oligomerization and found to exhibit remarkable catalytic activities upon activation with MAO. Reaction conditions as well as ligand environment significantly affected the catalytic performance of the nickel complexes; the highest activity could be achieved to be 2.7 × 106 g mol−1 Ni h−1.  相似文献   

17.
He Q  Chang X  Wu Q  Huang X  Hu Z  Zhai Y 《Analytica chimica acta》2007,605(2):192-197
A new functional monomer N-(o-carboxyphenyl)maleamic acid (CPMA) was synthesized and chosen for the preparation of surface-grafted ion-imprinted polymers (IIPs) specific for thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between -NH2 and maleic anhydride. In the ion-imprinting process, thorium(IV) was complexed with the carboxyl groups, then was imprinted in the polymers grafted to the silica gel surface. The imprinted Th(IV) was removed with 3 mol L−1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Th(IV). The relatively selective factor (αr) values of Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), Th(IV)/U(VI), and Th(IV)/Zr(IV) were 85.7, 88.9, 26.6, 64.4, and 433.8, respectively, which were greater than 1. The precision (R.S.D.), the detection limit (3σ), and the quantification limit (10σ) of the method were 1.9%, 0.51 ng mL−1 and 1.19 ng mL−1, respectively. The prepared IIPs as solid-phase extractants were successfully applied for the preconcentration of trace thorium in natural and certified samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) with satisfactory results.  相似文献   

18.
Yu C  Liu G  Zuo B  Tang Y  Zhang T 《Analytica chimica acta》2008,618(2):204-209
A cataluminescence (CTL) sensor using Al2O3 nanowires as the sensing material was developed for the determination of trace pinacolyl alcohol in air samples based on the catalytic chemiluminescence (CL) of pinacolyl alcohol on Al2O3 nanowires. Eight catalysts were examined and the CL intensity on Al2O3 nanowires prepared by supercritical fluid drying was the strongest. This novel CL sensor showed high sensitivity and selectivity to gaseous pinacolyl alcohol at optimal temperature of 340 °C. Quantitative analysis was performed at a wavelength of 460 nm. The linear range of CTL intensity versus concentration of gaseous pinacolyl alcohol was 0.09 × 10−6 to 2.56 × 10−6 g mL−1 (r = 0.9983, n = 6) with a detection limit (3σ) of 0.0053 × 10−6 g mL−1. None or only very low levels of interference were observed while the foreign substances such as water vapor, ethanol, ammonia, chloroform, benzene, nitrogen dioxide, methylbenzene, hydrochloric acid, methanol and butanol were passing through the sensor. The response time of the sensor is less than 100 s, and the sensor had a long lifetime more than 60 h. The sensor would be potentially applied to analysis of the nerve agents such as Soman.  相似文献   

19.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

20.
The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L−1 to 200 μmol L−1 with the detection limit of 0.8 μmol L−1, which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号