首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Underpotential deposition studies of copper on glassy carbon   总被引:1,自引:0,他引:1  
Studies on the deposition and dissolution of copper from 0·5 M sulphuric acid solutions onto glassy carbon (GC) using potential sweep techniques indicated that an additional peak occurs at higher positive potentials than the bulk stripping peak. This peak is identified as due to the stripping of underpotential deposited (UPD) copper. Results of investigations on the effect of sweep rate, deposition potential and time of deposition on the peak characteristics of UPD and bulk deposited copper are also reported.  相似文献   

2.
Screen-printed silver electrodes (AgSPEs), without chemical modification, has been investigated as disposable sensors for the measurement of trace levels of Pb2+. Potential segment analysis indicates that the formation of underpotential and bulk depositions of Pb is not strongly coupled on the AgSPE. The possibility of determining Pb2+ at trace levels using the reversible underpotential deposition peak was examined by square-wave anodic stripping voltammetry without removal of oxygen. Under the optimized analytical conditions, the obtained sensitivity, linearity, and detection limit are 0.355 μA/ppb, 5-80 ppb (r=0.9992), and 0.46 ppb (S/N=3), respectively. The electrode is quite stable for repetitive measurements. The interference effect was thoroughly studied with various metals and no significant change in current was found in the determination of 5 ppb Pb2+. The practical applications were demonstrated to measure trace Pb2+ in natural waters.  相似文献   

3.
The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of −0.7 V during the electrodeposition step for a period of 50 s. The interference of surfactants in the detection of lead ions is also studied.  相似文献   

4.
A novel voltammetry with a modified gold electrode for the direct determination of copper in environmental samples, without any pretreatment, is proposed in this paper. A porous disorganized monolayer was formed on the surface of the gold electrode by the self-assembly of mercaptoacetic acid (MAA), which could selectively permeate small molecules. Subtractive square wave anodic stripping voltammetry (SASV) was applied to determine copper, in which the underpotential deposition (UPD) of copper was used as the deposition step. The linear range was from 8 x 10(-7) to 1 x l0(-5) mol l(-1) by the modified electrode in the presence of human serum albumin, and the determination was not interfered with common metal ions. Copper in a real environmental sample was successfully detected.  相似文献   

5.
Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L−1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L−1) with detection limits of 1.8 and 2.9 μg L−1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.  相似文献   

6.
With the continual increase in the utilisation of rare earth elements (REE) for industrial and agricultural purposes, research into the environmental and biogeochemical behaviour of REE had attracted much interest in recent times. This study principally describes the distribution of REE in four different types of soils like lateritic soil (S-1), in situ natural soil (S-2), soil contaminated by mining activity (S-3) and accidentally polluted soil (S-4) utilizing the optimised BCR sequential extraction procedure and partial extractions with various types of single extractants such as unbuffered salt solutions 0.1 M NaNO3, 0.01 M CaCl2, 1 M NH4NO3; complexing agents 0.005 M DTPA and 0.05 M EDTA; acid solutions 0.43 M CH3COOH and 1 M HCl. Comparison of the sum of the four BCR fractions, which included an aqua regia attack on the residue, with the pseudo-total aqua regia digest values to assess the accuracy of the BCR partioning approach has been undertaken. Partial extraction results with several single extractants have also been reported for all the REE elements including yttrium which have been analysed by the optimised BCR procedure. Results obtained after 24 h extraction with each of the single extractant have also been discussed. The extraction with 1 M HCl during 24 h yielded similar quantities of REE as those released under the combined steps of 1, 2 and 3 of the BCR sequential extraction for all the four different type of soil samples indicating that this reagent can be used successfully to estimate the total extractable contents of REE in various types of soil samples.  相似文献   

7.
Jakmunee J  Junsomboon J 《Talanta》2008,77(1):172-175
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS.  相似文献   

8.
Single-use sensors, incorporating a three-electrode configuration (graphite carbon-working electrode; carbon-counter electrode and silver/silver chloride-reference electrode), have been fabricated on a polyester substrate using low cost screen-printing (thick-film) technology. These electrodes coupled with constant current stripping chronopotentiometry (CCSCP), has provided a convenient screening tool for on-site detection of trace levels of copper. Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and applied constant stripping current, well-resolved and reproducible response for copper was obtained. The stripping response for copper following 2 min deposition was linear over the concentration range examined (10-2000 ppb) with detection limit of 6 ppb using 2 M hydrochloric acid (HCl). Successful applications of the sensing device to acetic-acid bioavailable fraction of a certified reference material (CRM 601, a lake sediment) and soil samples are demonstrated.  相似文献   

9.
The study of a new type of working electrode - the renovated silver ring electrode (RSRE) - for lead ions detection via differential pulse anodic stripping voltammetry (DP ASV) without removal of oxygen is reported. The only four constituents of the RSRE: a specially constructed silver ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring, are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RSRE body. Excellent repeatability and reproducibility - also in organic samples solutions - were reached in a period of a few weeks through the renovation of the electrode surface before each measurement. The reduction and stripping of lead on silver electrode under the DP ASV conditions are underpotential deposition/dissolution phenomena. The RSRE is used for the determination of Pb ions in concentrations ranging from 1 × 10−9 to 1 × 10−7 M. The repeatability of DP ASV runs in synthetic solutions covering the entire concentration range is better than 2%. Obtained calibration curves are represented by a correlation coefficient of at least 0.999. The detection limit (LOD) for the time of electrodeposition equal to 60 s is 0.2 × 10−9 M. LOD for Pb2+ detection at the RSRE is similar to this reported for a rotating silver electrode in subtractive anodic stripping voltammetry (E. Kirowa-Eisner, et al., Anal. Chim. Acta, 385 (1999) 325). The analysis of Pb2+ in synthetic solutions with and without surfactants, certified reference materials and natural water samples have been performed.  相似文献   

10.
A study is presented on the use of the bismuth film electrode (BiFE) operated in the anodic stripping and the cathodic adsorptive stripping voltammetry (ASV, CAdSV) modes, for the determination of two trace heavy metals (Cd and Co, respectively), in soil extract samples. Two types of BiFE were examined in this study: the in situ prepared BiFE, which was employed in ASV determination of Cd, and the ex situ prepared BiFE, which was used in CAdSV of Co with dimethylglyoxime (DMG) as complexing agent. A series of unpretreated soil extracts with varying Cd and Co concentrations were analyzed, and the results obtained compared to those determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed the suitability of stripping analysis at the BiFE for determination of μg l−1 levels of heavy metals in soil extracts. The promising results obtained here, coupled with the non-toxic nature of bismuth (in comparison to commonly used mercury electrodes employed in stripping analysis), offer great promise in centralized and decentralized analysis of trace heavy metals in complex environmental matrices.  相似文献   

11.
The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4 h, 1 mol L−1 HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 μmol g−1) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 μmol g−1) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (ΣSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.  相似文献   

12.
Mahajan RK  Walia TP  Sumanjit  Lobana TS 《Talanta》2005,67(4):755-759
The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at −0.35 V, which has been used for the determination of copper in the concentration range of 7.85 × 10−9 to 8.00 × 10−6 M with accumulation time of 360 s at −0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.  相似文献   

13.
The kinetics of underpotential deposition, three-dimensional nucleation, and growth of copper deposits at cathodic overpotentials on a Pt(111) electrode in solutions containing 0.5 M H2SO4, 10 mM CuSO4, and 0–200 mM acetonitrile (AcN) is studied by the cyclic voltammetry, potentiostatic current transients, and scanning probe microscopy methods. At low volume concentrations of acetonitrile ([AcN] ≤ 4 mM), adsorbed acetonitrile molecules accelerate the formation of a co-adsorption lattice of copper adatoms with anions due to local electrostatic effects at the charged interface. At higher concentrations, the underpotential deposition process is hampered, but the desorption of copper adatoms occurs at potentials more positive than those at low acetonitrile concentrations. This effect is attributed to a stabilizing action of acetonitrile molecules situated on the layer of copper adatoms and, in part, on platinum. At [AcN] = 0.4–40 mM, adsorbed acetonitrile molecules accelerate the growth of the bulk copper deposit, but the nucleation stage is hindered. The dependence of the copper amount on the deposition potential at [AcN] = 40 mM exhibits a maximum at 0.15–0.17 V. This effect was previously observed in weakly acid solutions (pH 1.7–3.0) containing no acetonitrile. The maximum rate of the deposit growth corresponds to an optimum number of crystallites (which is not too great) and an optimum distance between the growing centers in conditions of mixed kinetics “diffusion + electron transfer.” A substantial number of complexes Cu(I)-AcN forms at high acetonitrile concentrations.  相似文献   

14.
A sequential injection lab-on-valve (LOV) unit, integrating a miniaturized electrochemical flow cell (EFC), has been constructed for the determination of trace amounts of Se (IV) by employing cathodic stripping voltammetry (CSV) technique. The procedure is carried out on a mercury film coated glassy carbon electrode. The analyte solution and electrolyte solution were continuously aspirated and merged in the holding coil (HC) by using a single syringe pump, which were afterwards pushed into the EFC, where the peak current was generated during the subsequent deposition/stripping procedure and measured as the basis of quantification. Assay parameters were optimized in order to achieve the best analytical performance, including mercury film preparation, supporting electrolyte composition, deposition potential and deposition time, and flow variables in the LOV. By loading a sample volume of 500 μL, a linear calibration graph was derived within 1-600 μg L−1, and a detection limit (3б) of 0.11 μg L−1 was achieved along with a sampling frequency of 20 h−1. By integrating the EFC into the LOV unit, the assembling system not only minimized the sample/reagent consumption and waste generation, but also enhanced the sampling frequency. The work itself extended the applications of electrochemical detection techniques and provided a good platform for Se (IV) electrochemical analysis.  相似文献   

15.
This work describes a study of the underpotential deposition (UPD) of Sn2+ on a polycrystalline gold disc electrode using cyclic voltammetry (CV) and chronocoulometry (CC). Sn2+ ions showed well-defined peaks from UPD and UPD stripping (UPD-S) in 1 mol/L HCl solutions, while bulk deposition (BD) and BD stripping (BD-S) of the ions were also observed. The measured UPD shifts, EUPD, between the UPD-S and the BD-S peaks were more than 200 mV. The UPD charge and the surface coverage of tin were measured by CC. A new method for determining Sn2+ was therefore developed, based on the excellent electrochemical properties of the Au/Sn UPD system. A plot of the UPD-DPASV (differential pulse anodic stripping voltammetry) signal versus the Sn(II) concentration was obtained for [Sn(II)] of 1.98×10–7 to 3.64×10–5 M. The method developed here has been applied to determine the tin in a tin plate sample.  相似文献   

16.
The combined effects of pH, thiocyanate ion and deposition potential in the characteristics of thin mercury film electrodes plated on glassy carbon surfaces are evaluated. Charges of deposited mercury are used as an experimental parameter for the estimation of the effectiveness of the mercury deposition procedure. The sensitivity of the anodic stripping voltammetry (ASV) method for the determination of lead at in situ and at ex situ formed thin mercury films are also examined. It was concluded that, in acidic solutions (pH 2.5-5.7) and fairly negative deposition potentials, e.g. −1.3 to −1.5 V, thiocyanate ion promotes the formation of the mercury film, in respect both to the amount of deposited mercury and to the mercury deposition rate. Also, the mercury coatings produced in thiocyanate solutions are more homogeneous, as depicted by microscopic examinations. In the presence of thiocyanate there is no obvious advantage of using high concentrations of mercury and/or high deposition times for the in situ and ex situ preparation of the mercury film electrodes. The optimised thin mercury film electrode ex situ prepared in a 5.0 mM thiocyanate solution of pH 3.4 was successfully applied to the ASV determination of lead and copper in acidified seawater (pH 2). The limit of detection (3σ) was 6×10−11 M for lead and 2×10−10 M for copper for a deposition time of 5 min. Relative standard deviations (R.S.D.s) of <1.2% were obtained for determinations at the nanomolar of concentration level.  相似文献   

17.
The formation of ultra-thin metal deposits of copper on Pt(111) and polycrystalline platinum electrodes, as well as the adsorption of bisulfate on the copper-covered platinum surfaces, were studied by cyclic voltammetry and radioactive labeling. The highest charge obtained by voltammetry in the underpotential stripping range nearly corresponds to a close-packed monolayer of copper. The radioactive labeling data indicate that there are inactive and active copper adlayers toward bisulfate adsorption. The transition from inactive to active behavior is interpreted in terms of an increase in surface—bisulfate interactions at the expense of surface—perchlorate interactions. Based on recent X-ray absorption near-edge spectroscopy (XANES) analysis of copper deposition onto platinum, the site for bisulfate adsorption is most probably a Cu+ surface species. Combining this spectroscopic information with coulometry shows that an additional electron is confined to surface platinum atom(s) covered by the copper species. The copper film attains bulk copper properties when approximately 2.5 monolayers of copper are deposited.  相似文献   

18.
In situ microwave activation has been applied to the electro-deposition and stripping of palladium metal (which is widely used as a catalyst) at cavitation resistant boron-doped diamond electrodes. Focused microwave radiation leading to heating, boiling, and cavitation is explored as an option to improve the speed and sensitivity of the analytical detection procedure. The deposition and anodic stripping of palladium by linear sweep voltammetry in 0.1 M KCl (pH 2) solution and at boron-doped diamond electrodes is shown to be strongly enhanced by microwave activation due to both (i) the increase in mass transport and (ii) the increase in the kinetic rate of deposition and stripping.The temperature at the electrode surface is calibrated with the reversible redox couple Fe(CN)64−/Fe(CN)63− and found to be reach 380 K. In the presence of microwave radiation, the potential of onset of the deposition of palladium is strongly shifted positive from −0.4 to +0.1 V versus SCE. The optimum potential for deposition in the presence of microwaves is −0.4 V versus SCE and the anodic stripping peak current is shown to increase linearly with deposition time. Under these conditions, the stripping peak current varies linearly with the palladium concentration down to ca. 2 μM. At concentration lower than this a logarithmic variation of the stripping peak current with concentration is observed down to ca. 0.1 μM (for 5 min pre-concentration in presence of microwave radiation).  相似文献   

19.
A method comprising matrix exchange differential pulse stripping voltammetry (DPSV) at a gold film electrode has been proposed for the determination of small quantities of arsenic in pure gold. A wall-jet cell (WJC) and an on-line deoxygenation system were used to facilitate matrix exchange. The gold(I) cyanide complex was formed to avoid gold deposition on the electrode together with the arsenic. The pH of the sample solutions were adjusted to 3, as alkaline solutions gold(I) cyanide produced interference and the uncomplexed cyanide led to passivation of the gold film electrode. Matrix exchange electrolytes consisting of 4 mol l−1 hydrochloric acid or a combination of 2 mol l−1 sulphuric acid and 0.2 mol l−1 hydrochloric acid could be utilised. Arsenic concentrations as low as 0.1 mg l−1, could readily be detected in a gold matrix with a 60 s deposition time. While, cobalt and silver did not interfere with the arsenic determination, copper interfered even when present at similar concentrations to that of arsenic.  相似文献   

20.
In this preliminary note, a new type of working electrode – the renovated silver ring electrode (RSRE) – is presented. The main constituents of the RSRE: a specially constructed silver ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RSRE body. The effectiveness of the renovation procedure was tested by designating the RF and Epzc and by recording Cdt curves. As shown on selected examples, RSRE exhibits good performance in underpotential deposition stripping voltammetry (UPD-SV) applied for the determination of Pb(II) traces in certified reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号