首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical rubbery ormosils sensor for the detection of ammonia   总被引:1,自引:0,他引:1  
Rubbery ormosil films with immobilized aminofluorescein (AF) were investigated to develop an optochemical sensor for the determination of ammonia in water. The gel precursors with tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMeDMOS) were deposited on glass supports, and characterized in terms of response to pH, and to dissolved ammonia at constant pH. After preconditioning the sensing film was stable for 6 months. The detection limit for ammonia in water was 0.2 μg mL–1 (S/N 2), the response being linearly dependent on concentration in the range of 0.5 to 80 μg mL–1 ammonia. The response time was less than 5 min. The effects of sodium chloride concentration, temperature, and coexisting metal ions and compounds were investigated. Received: 22 December 2000 / Revised: 5 March 2001 / Accepted: 7 March 2001  相似文献   

2.
Cross-linked poly(vinyl alcohol) (PVA)-silica gel copolymer has been employed as a optical pH sensor substrate for immobilisation of fluorescein. Cross-linking was carried out by the sol-gel process incorporating PVA in initial sol-gel solution of tetra-methoxysilane (TMOS) under acidic conditions. Three dimensional network formation could be achieved using compositions of PVA/TMOS=80-90/20-10 vol.% to result in crack-free films. The fluorescent sensor layers were prepared by dip-coating of gel solution onto glass slides. The dynamic fluorescence response towards different pH values was investigated in terms of the influence of sample ionic strength, membrane composition as well as age of sol-gel layers. Depending on the composition of the matrix pKa values of 6.50, 6.68 and 7.06 were found 18 days after continues storage in buffer.  相似文献   

3.
A new method involving headspace single-drop microextraction (SDME) and capillary electrophoresis (CE) is developed for the preconcentration and determination of ammonia (as dissolved NH3 and ammonium ion). An aqueous microdrop (5 μL) containing 1 mmol/L H3PO4 and 0.5 mmol/L KH2PO4 (as internal standard) was used as the acceptor phase. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time) affecting the extraction efficiency were investigated. Proposed SDME-CE method provided about 14-fold enrichment in about 20 min. The calibration curve was linear for concentrations of NH4+ in the range from 5 to 100 μmol/L (R2 = 0.996). The LOD (S / N = 3) was estimated to be 1.5 μmol/L of NH4+. Such detection sensitivity is high enough for ammonia determination in common environmental and biological samples. Finally, headspace SDME was applied to determine ammonia in human blood, seawater and milk samples with spiked recoveries in the range of 96-107%.  相似文献   

4.
Differences in mass loss occurring in the course of dynamic and isothermal heating of SiO2-aerogel and changes of specific surface and hydrophylicity during calcination were studied by thermal analysis. SiO2-aerogel was prepared from tetramethoxysilane (TMOS) hydrolyzed by ammonia solution at 0°C with molar ratio TMOS: H2O:NH4OH 4:1:0.01. Differences are caused mainly by oxidation of organic matter and by diffusion of products of the oxidation. Heat transfer has none or little effect on the differences. Samples calcined at temperatures about 300°C reach maximum hydrophilicity though they still contain small amounts of residual organic matter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Optical rubbery ormosils sensor for the detection of ammonia   总被引:1,自引:0,他引:1  
Rubbery ormosil films with immobilized aminofluorescein (AF) were investigated to develop an optochemical sensor for the determination of ammonia in water. The gel precursors with tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMeDMOS) were deposited on glass supports, and characterized in terms of response to pH, and to dissolved ammonia at constant pH. After preconditioning the sensing film was stable for 6 months. The detection limit for ammonia in water was 0.2 microg mL(-1) (S/N 2), the response being linearly dependent on concentration in the range of 0.5 to 80 microg mL(-1) ammonia. The response time was less than 5 min. The effects of sodium chloride concentration, temperature, and coexisting metal ions and compounds were investigated.  相似文献   

6.
In continuation to our earlier work on aerogels, the experimental results on the monolithicity and physical properties of silica aerogels as a function of the molar ratios of tetramethoxysilane (TMOS) precursor, catalyst (NH4OH), methanol (MeOH) solvent and water, are reported. The molar ratios of NH4OH/TMOS, MeOH/TMOS and H2O/TMOS were varied from 7.1 × 10–6 to 9.6 × 10–1, 1 to 90 and 1 to 18 respectively. It has been found that larger molar ratios of NH4OH/TMOS (10–2), MeOH/TMOS (13 to 60) and H2O/TMOS (>10) resulted in transparent but cracked aerogels, and very low molar ratios of these combinations gave monolithic but less transparent or opaque aerogels. The best quality silica aerogels, in terms of monolithicity, transparency and low density, have been obtained with TMOS:MeOH:H2O:NH4OH in the molar ratio of 1:12:4:3.7 × 10–3 respectively. The aerogels have been characterized by density, optical transmission, surface area and porosity measurements. The results have been discussed by taking into account the hydrolysis and condensation reactions, and syneresis effects.  相似文献   

7.
Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO2) aerosols (a mixture of solid and gaseous CO2), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL−1) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.  相似文献   

8.
The feasibility of biomimetic molecular sensing of homocysteine, an independent risk factor for cardiovascular diseases, was studied. The sensing approach coupled fluorescent derivatization of dl-homocysteine by a thiol-specific fluoro-tagging agent, N-(1-pyrenyl)maleimide, with molecular recognition by a molecularly imprinted polymer (MIP) matrix. The non-covalent MIP was fabricated using the N-(1-pyrenyl)maleimide-dl-homocysteine (PM-H) adduct as template. The PM-H-MIP was found to possess outstanding analyte-specific affinity for PM-H with binding constant, KB, of 9.28±1.6×105 M−1 and density of recognition sites, Bmax, of 11.9±0.8 nmol/g dried MIP. Following in situ fluorescent derivatization, luminescent response of the MIP was found to correlate linearly with concentration of dl-homocysteine in the range corresponding to realistic total homocysteine concentration in blood plasma. Besides being a passive recognition matrix for the binding of the fluoro-tagged analyte, the PM-H-MIP material was found to be able to specifically enhance the rate of derivatization reaction between dl-homocysteine and N-(1-pyrenyl)maleimide. In a sense, the MIP transformed a fluoro-tagging agent, which is generally reactive towards a broad spectrum of thiol-containing species, into a dl-homocysteine-specific derivatizing agent. The mechanism of such analyte-specific enhancement of derivatization rate and its advantages to the biomimetic molecular sensing are discussed.  相似文献   

9.
Solubilities of ammonia in basic imidazolium ionic liquids   总被引:1,自引:0,他引:1  
Solubilities of ammonia in four conventional imidazolium ionic liquids: [Cnmim][BF4] (n = 2, 4, 6, 8) have been measured. Isothermally fixed temperatures are 293.15, 303.15, 313.15, 323.15 and 333.15 K; the pressure is from 0 to 1.0 MPa. High solubilities of ammonia are found, and it is also found that the solubilities of ammonia increase when the length of cations’ alkyl increases (the ILs have the same anion), that is: [C8mim]+ > [C6mim]+ > [C4mim]+ > [C2mim]+. The solubility data have been correlated by the Krichevisky–Kasarnovsky equation, and then Henry's constants and partial molar volumes of NH3 at infinite dilution are obtained. The thermodynamic properties such as solution enthalpy (ΔsolH), solution Gibbs free energy (ΔsolG), solution entropy (ΔsolS), and solution heat capacity (ΔsolCp) of these systems are obtained.  相似文献   

10.
Following growing interest in the use of ammonia as a fuel in solid oxide fuel cells (SOFCs), we have investigated the possible reaction between the apatite silicate/germanate electrolytes, La8+xSr2−x(Si/Ge)6O26+x/2, and NH3 gas. We examine how the composition of the apatite phase affects the reaction with ammonia. For the silicate series, the results showed a small degree of N incorporation at 600 °C, while at higher temperatures (800 °C), substantial N incorporation was observed. For the germanate series, partial decomposition was observed after heating in ammonia at 800 °C, while at the lower temperature (600 °C), significant N incorporation was observed. For both series, the N content in the resulting apatite oxynitride was shown to increase with increasing interstitial oxide ion content (x/2) in the starting oxide. The results suggest that the driving force for the nitridation process is to remove the interstitial anion content, such that for the silicates the total anion (O+N) content in the oxynitrides approximates to 26.0, the value for an anion stoichiometric apatite. For the germanates, lower total anion contents are observed in some cases, consistent with the ability of the germanates to accommodate anion vacancies. The removal of the mobile interstitial oxide ions on nitridation suggests problems with the use of apatite-type electrolytes in SOFCs utilising NH3 at elevated temperatures.  相似文献   

11.
In this study, we comprehensively present the gas sensing performance of strontium (Sr)-doped barium titanate (BaTiO3) nanostructures which are synthesized by a low-temperature hydrothermal route. The in-situ doping of strontium in BaTiO3 nanostructures is achieved with different molar concentrations of Sr, and the sensing performance was evaluated by screen printing process of products to form their thick films. The thick films of as-prepared Sr-doped BaTiO3 (BaSrTiO3) were investigated for gas sensing performance for various gases at different operating temperatures where strong response was observed for both nitrogen dioxide (NO2) and ammonia (NH3) gases at room temperature. Furthermore, the sensing response at room temperature for NH3 and NO2 gases was also studied with respect to Sr doping concentrations in BaTiO3 nanostructures.  相似文献   

12.
K2Li(NH2)3 (1) was the only crystalline product obtained from the reaction of potassium with dilithium decahydro-closo-decaborate Li2B10H10 in liquid ammonia at −38 °C. The compound crystallizes in the space group P42/m with Z=4, a=6.8720(5) Å, c=11.706(1) Å and V=552.81(7) Å3. The investigated crystal-chemically isotypic sodium compound K2Na(NH2)3 (2) was merohedrally twinned and crystallized from a reaction mixture containing potassium and disodium decahydro-closo-decaborate Na2B10H10 in liquid ammonia with a=7.0044(5) Å, c=12.362(1) Å and V=606.48(9) Å3. The compounds contain pairs of edge sharing tetraamidolithium or tetraamidosodium tetrahedra which are interconnected by potassium ions forming three-dimensional infinite networks.  相似文献   

13.
The total Kjeldahl nitrogen (TKN) method was simplified by using a manifold connected to a purge-and-trap system immersed into an ultrasonic (US) bath for simultaneous ammonia (NH3) extraction from many previously digested samples. Then, ammonia was collected in an acidic solution, converted to ammonium (NH4+), and finally determined by ion chromatography method. Some variables were optimized, such as ultrasonic irradiation power and frequency, ultrasound-assisted NH3 extraction time, NH4+ mass and sulfuric acid concentration added to the NH3 collector flask. Recovery tests revealed no changes in the pH values and no conversion of NH4+ into other nitrogen species during the irradiation of NH4Cl solutions with 25 or 40 kHz ultrasonic waves for up to 20 min. Sediment and oil free sandstone samples and soil certified reference materials (NCS DC 73319, NCS DC 73321 and NCS DC 73326) with different total nitrogen concentrations were analysed. The proposed method is faster, simpler and more sensitive than the classical Kjeldahl steam distillation method. The time for NH3 extraction by the US-assisted purge-and-trap system (20 min) was half of that by the Kjeldahl steam distillation (40 min) for 10 previously digested samples. The detection limit was 9 μg g−1 N, while for the Kjeldahl classical/indophenol method was 58 μg g−1 N. Precision was always better than 13%. In the proposed method, carcinogenic reagents are not used, contrarily to the indophenol method. Furthermore, the proposed method can be adapted for fixed-NH4+ determination.  相似文献   

14.
A zinc/aluminum LDH was precipitated with recycled ammonia from a chemical vapor deposition reaction. The LDH presented a crystalline phase with basal distance of 8.9 Å, typical for nitrate-containing LDHs, and another phase with a basal distance of 13.9 Å. Thermal treatment at 150 °C eliminated the phase with the bigger basal distance leaving only the anhydrous nitrate-intercalated LDH structure with 8.9 Å. Intense N-H stretching modes in the FTIR spectra suggested that the expansion was due to intercalation of ammonia in the form of [NH4(NH3)n]+ species. When additional samples were precipitated with pure ammonia, the conventional LDH nitrate structure was obtained (8.9 Å basal distance) at pH=7, as well as a pure crystalline phase with 13.9 Å basal distance at pH=10 due to ammonia intercalation that can be removed by heating at 150 °C or by stirring in acetone, confirming a unusual sensu stricto intercalation process into a LDH without exchanging nitrate ions.  相似文献   

15.
Selective oxidation of one (trans to N) carbonyl group in [Rh(8-Oxiquinolinato)(CO)2] with stoichiometric amount of Me3NO in MeCN produces a solution containing [Rh(Oxq)(CO)(Me3N)] and [Rh(Oxq)(CO)(MeCN)]. The ammonia complex, [Rh(Oxq)(CO)(NH3)], has been prepared by action of NH3 gas on this solution and characterized by IR, 1H and 13C NMR, and X-ray data. Spectral parameters, ν(CO), δ13C, and 1J(CRh), were measured in situ for a series of complexes [Rh(Oxq)(CO)(L)] (L = NAlk3, Py, PBu3, PPh3, P(OPh)3, C8H14) formed upon action of L on [Rh(Oxq)(CO)(NH3)] in THF. A new ν(CO) and δ13C based scale of σ-donor/π-acceptor properties of ligands L is proposed including NH3 and CO as the natural endpoints.  相似文献   

16.
Mrak T  Slejkovec Z  Jeran Z 《Talanta》2006,69(1):251-258
Different extraction procedures were applied to improve the extraction efficiency of arsenic compounds from lichens. Two lichen species were chosen from an arsenic-contaminated environment: epiphytic Hypogymnia physodes (L.) Nyl. and terricolous Cladonia rei Schaer. Samples were extracted with water at temperatures of 20, 60 and 90 °C, using mixtures of methanol/water (9:1, 1:1 and 1:9), Tris buffer and acetone and the extracts speciated. Water and Tris buffer showed the best extraction efficiency of all extractants used; however, the extraction efficiency was still less than 23%. Since a major fraction of arsenic appeared to be associated with trapped soil particles, a sequential extraction procedure originally designed for soils (extraction steps: (1) 0.05 mol l−1 (NH4)2SO4; (2) 0.05 mol l−1 (NH)4H2PO4; (3) 0.2 mol l−1 NH4-oxalate buffer, pH 3.25; (4) mixture of 0.2 mol l−1 NH4-oxalate buffer and 0.1 mol l−1 ascorbic acid, pH 3.25; (5) 0.5 mol l−1 KOH) was applied and found to remove 45% of the total arsenic from H. physodes and 83% from C. rei. The lipid-soluble fraction of arsenic was estimated by k0-INAA analysis of diethylether extracts and was found to be negligible. An HPLC-UV-HGAFS system was used to determine the arsenic compounds extracted. In both lichen species, arsenous acid, arsenic acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide and glycerol-ribose were detected. In addition, phosphate-ribose was found in H. physodes.  相似文献   

17.
Oh Seok Kwon  O. Young Kweon 《Talanta》2010,82(4):1338-1526
Poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) flexible membrane was successfully fabricated by vapor deposition polymerization (VDP) mediated electrospinning for ammonia gas detection. PVA nanofibers (NFs) were electrospun as a core part and polyvinyl alcohol (PVA)/PEDOT coaxial nanocables (NCs) were prepared by VDP method via EDOT monomer adsorption onto the electrospun PVA NFs as templates. To obtain the PEDOT NTs membrane, the PVA NFs were removed from PVA/PEDOT coaxial NCs with distilled water. PVA/PEDOT coaxial NCs and PEDOT NTs had the conductivities of 71 and 61 S cm−1 and were applied as a transducer for ammonia gas detection in the range of 1-100 parts per million (ppm) of NH3 gas. They exhibited the minimum detectable level of ca. 5 parts per million (ppm) and fast response time (less than 1 s) towards ammonia gas. In a recovery time, the PEDOT NTs membrane sensor was ca. 30 s and shorter compared to that of the membrane sensor based on the PVA/PEDOT NCs (ca. 50 s). In addition, sensor performance of PEDOT NTs membrane was also undertaken as a function of membrane thickness. Thick membrane sensor (30 μm) had the enhanced sensitivity and the sensitivity on the membrane thickness was in the order of 30 μm > 20 μm > 10 μm at 60 ppm of NH3 gas.  相似文献   

18.
The first layered hydroxylammonium fluorometalates, (NH3OH)2CuF4 and (NH3OH)2CoF4, were prepared by the reaction of solid NH3OHF and the aqueous solution of copper or cobalt in HF. Both compounds crystallize in monoclinic, P21/c, unit cell with parameters: a = 7.9617(2) Å, b = 5.9527(2) Å, c = 5.8060(2) Å, β = 95.226(2)° for (NH3OH)2CuF4 and a = 8.1764(3) Å, b = 5.8571(2) Å, c = 5.6662(2) Å, β = 94.675(3)° for (NH3OH)2CoF4, respectively. Magnetic susceptibility was measured between 2 K and 300 K giving the effective Bohr magneton number of 2.1 for Cu and 5.2 BM for Co. At low temperatures both complexes undergo a transition to magnetically ordered phase. The thermal decomposition of both compounds was studied by TG, DSC and X-ray powder diffraction. The thermal decomposition of (NH3OH)2CuF4 is a complex process, yielding NH4CuF3 as an intermediate product and impure Cu2O as the final residue, while (NH3OH)2CoF4 decomposes in two steps, obtaining CoF2 after the first step and CoO as the final product.  相似文献   

19.
Alkali and ammonium cobalt and zinc phosphates show extensive polymorphism. Thermal behavior, relative stabilities, and enthalpies of formation of KCoPO4, RbCoPO4, NH4CoPO4, and NH4ZnPO4 polymorphs are studied by differential scanning calorimetry, high-temperature oxide melt solution calorimetry, and acid solution calorimetry.α-KCoPO4 and γ-KCoPO4 are very similar in enthalpy. γ-KCoPO4 slowly transforms to α-KCoPO4 near 673 K. The high-temperature phase, β-KCoPO4, is 5-7 kJ mol−1 higher in enthalpy than α-KCoPO4 and γ-KCoPO4. HEX phases of NH4CoPO4 and NH4ZnPO4 are about 3 kJ mol−1 lower in enthalpy than the corresponding ABW phases. There is a strong relationship between enthalpy of formation from oxides and acid-base interaction for cobalt and zinc phosphates and also for aluminosilicates with related frameworks. Cobalt and zinc phosphates exhibit similar trends in enthalpies of formation from oxides as aluminosilicates, but their enthalpies of formation from oxides are more exothermic because of their stronger acid-base interactions. Enthalpies of formation from ammonia and oxides of NH4CoPO4 and NH4ZnPO4 are similar, reflecting the similar basicity of CoO and ZnO.  相似文献   

20.
A synthesis of labeled oligonucleotides incorporating a new chemically cleavable linker (III) via a two-step method is described. The labeled oligomers obtained after cleavage and deprotection reactions [treatment with anhydrous tert-butylamine and dry methanol, 1:1 (v/v) for 12 h at room temperature, and lyophilization followed by subsequent reaction with aq NH4OH and methylamine (40%), 1:1 (v/v) for 5 min at 65 °C] were analyzed by RP-HPLC. A distinctive feature of this protocol is that free oligomers can be recovered from their labeled analogs under mild conditions (0.2 M NaOH containing 0.5 M NaCl over 30 min at room temperature) and are comparable to the corresponding standard oligonucleotides (HPLC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号