首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various levels of calculations are carried out~for exploring the potential energy surface (PES) of triplet SiC3O, a molecule of potential interest in interstellar chemistry. A total of 38 isomers are located on the PES including chain-like, cyclic and cage-like structures, which are connected by 87 interconversion transition states at the DFT/B3LYP/6-311G(d) level. The structures of the most relevant isomers and transition states are further optimized at the QCISD/6-311G(d) level followed by CCSD(T)/6-311+G(2df) single-point energy calculations. At the QCISD level, the lowest lying isomer is a linear SiCCCO 1 (0.0 kcal/mol) with the 3 ∑ electronic state, which possesses great kinetic stability of 59.5 kcal/mol and predominant resonant structure . In addition, the bent isomers CSiCCO 2 (68.3 kcal/mol) and OSiCCC 5 (60.1 kcal/mol) with considerable kinetic stability are also predicted to be candidates for future experimental and astrophysical detection. The bond natures and possible formation pathways in interstellar space of the three stable isomers are discussed. The predicted structures and spectroscopic properties for the relevant isomers are expected to be informative for the identification of SiC3O and even larger SiC n O species in laboratory and interstellar medium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The calculations of the geometry optimizations, energies, dipole moments, vibrational spectra, rotational constants, and isomerization of doublet SiC3H species were performed using density functional theory and ab initio methods. Four types of isomers, a total of 18 minima, connected by 16 interconversion transition states, were located on the potential energy surface (PES) at the B3LYP/6-311G (d, p) level. More accurate energies were obtained at the CCSD(T)/6-311G(2df, 2p), and G3(MP2) levels. With the highest isomerization barrier, the lowest lying structure, linear A1 possesses the largest kinetic stability. Besides, the isomerization barriers of A2, A4, C2, F1, F4 and F5 are over 10 kcal/mol, and these isomers are also considered to be higher kinetically stable. Other isomers cannot be kinetically stabilized with considerably low isomerization barriers. Investigation on the bonding properties and the computations of vibrational spectra, dipole moments, and rotational constants for SiC3H isomers are helpful for understanding their structures and also valuable for their detections in the interstellar space and laboratory.  相似文献   

3.
Density functional theory (DFT) calculations have been used to study the isomerization process in the NC3P system. At the DFT/B3LYP/6-311G(d) level, 28 triplet and 28 singlet minima were obtained on their respective potential energy surfaces. The linear triplet 3NCCCP is the lowest-energy structure among the isomers. On the triplet PES, only linear isomers 3NCCCP, 3CNCCP, 3CCCNP, and 3CCNCP possess great kinetic and thermodynamic stabilities to exist under low-temperature conditions (such as in the dense interstellar clouds). At the same time, one chain-like and four three-membered-ring isomers on the singlet PES have been located with high kinetic and thermodynamic stabilities. Further CCSD(T)/6-311G(2df)//QCISD/6-311G(d), CCSD(T)/cc-pVTZ//DFT/B3LYP/cc-pVTZ, and CASPT2(14,12)/cc-pVQZ//CASSCF(14,12)/cc-p VQZ calculations are performed on the structures, frequencies, and energies of the relevant species. The bonding natures were analyzed and the results were compared with the analogous NC3N and NC2P molecules so as to aid their future experimental or astrophysical detection.  相似文献   

4.
 The structures and isomerization pathways of various HC2P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure 3 1 in the 3 state. The second low-lying isomer has a CPC ring with exocyclic CH bonding 1 5 in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure 1 1 at 20.9 kcal/mol and a bent singlet HPCC structure 1 3 at 35.8 kcal/mol, respectively. Investigation of the HC2P potential-energy surface indicates that in addition to the experimentally known isomer 3 1, the other isomers 1 1, 1 3 and 1 5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC 1 2 and 3 2 as well as the triplet bent isomer HPCC 3 3 are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC2P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC2P isomers 1 1, 1 3 and 1 5 either in the laboratory or in interstellar space. Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002  相似文献   

5.
The potential energy surface of HPS2 system containing nine isomers and fifteen transition states is obtained at MP2/6-311++G(d, p) and QCISD(t)/6-311++G(3df, 2p)(single-point) levels. On the potential energy surface, the lowest-lying trans-HSPS(E1) is found to be thermodynamically the most stable isomer followed by cis-HSPS(E2) and HP(S)S(C2v, E3) at 3.43 and 14.17 kJ/mol higher, respectively. The computed results show that species E1, E2, E3, stereo HP(S)S(Cs, E4) with PSS three-membered ring, isomers trans-HPSS(E5) and cis-HPSS(E6) which coexist with E4 are kinetically stable isomers. The products E6 and E5 in the reaction of HP with S2 can be isomerized into higher kinetic stable isomer E4 with 65.75 and 71.73 kJ/mol reaction barrier height, respectively. The predicated results may correct the possible inaccurate conclusion in that the product was experimentally assigned as isomer cis-HPSS(E6).  相似文献   

6.
采用DFT,QCISD和CCSD(T)等理论计算方法对三重态SiCP2异构体的结构和稳定性进行了理论研究.在B3LYP/6-311G(d)水平下,共计算得到由17个过渡态相连接的15个异构体.在CCSD(T)/6-311 +G(2df)//QCISD/6-311G(d)水平下,考虑重点振动能相对能量最低的三元环状异构体P-cCSiP 8(0.0 kJ/mol)及四元环状结构的cPCSiP 4具有相当大的动力学稳定性,在一定的实验室和星际条件下可能被检测到.另外,对它们的成键性质也进行了分析.  相似文献   

7.
The aluminum chlorogermylenoid H2GeClAlCl2 was studied for the first time by using the DFT B3LYP and QCISD methods in gas phase and in C6H12, THF, DMSO, and H2O solvents. The theoretical calculations predicted that H2GeClAlCl2 has three equilibrium configurations, in which the p-complex is the lowest in energy and is the most stable structure. The isomerization reactions among the three complexes have been investigated. The p-complex is suggested to be the predominant form of H2GeClAlCl2 in the gas phase and in solutions thermodynamically and kinetically.  相似文献   

8.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

9.
The lowest energy structures of peroxynitric acid have been studied with B3LYP/6-311+ G(2d,2p) method. The potential energy surfaces (PES) along the O-N and O-Obonds have been scanned at CCSD(T)/aug-cc-pVDZ level, respectively. The calculated results show that on the O-N PES, the O3-N4 bond length of the loose transition state is 2.82 ? and the corresponding energy barrier is 25.6 kcal/mol, while on the O-O PES, the loose transition state with of O2-O3 bond length of 2.35 ? has the energy barrier of 37.4 kcal/mol. Thus the primary reaction path for peroxynitric acid is the dissociation into HO2 and NO2.  相似文献   

10.
Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 °C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with TN=8.8(1) K and CeAu4Si2 features a ferromagnetic component below Tc=3.3(1) K. Both phases have effective moments close in value to that of free Ce3+.  相似文献   

11.
Highly crystalline one-dimensional (1D) α-MnO2 nanostructures were synthesized by a hydrothermal method. All samples were characterized by X-ray diffraction, transmission electron microscope, thermogravimetric and differential scanning calorimeter, and infrared spectroscopy. During the formation reactions, the tunnel structure of 1D α-MnO2 was simultaneously modified by NH4+ species and water molecules. The amount of NH4+ species that were trapped in the tunnels is almost independent on the reaction temperature, while the total water content increased with the reaction temperature. The average diameter of α-MnO2 nanorods increased from 9.2 to 16.5 nm when the reaction temperature increased from 140 to 220 °C. 1D α-MnO2 was destabilized by a subsequent high-temperature treatment in air, which is accompanied by a structural transformation to 1D Mn2O3 of a cubic structure. At low temperatures, all 1D α-MnO2 nanorods showed two magnetic transitions that were characterized by a decreased Néel temperature with rod diameter reduction. According to the effective magnetic moments experimentally measured, Mn ions presented in the nanorods were determined to be in a mixed valency of high spin state Mn4+/Mn3+.  相似文献   

12.
The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.  相似文献   

13.
The compounds (NH4)3[Ta(O2)4], K3[Ta(O2)4], Rb3[Ta(O2)4] and Cs3[Ta(O2)4] have been prepared and investigated by X-ray powder methods as well as Raman- and IR-spectroscopy. In the case of Rb3[Ta(O2)4] the structure has been solved from single crystal data. It is shown that all these compounds are isotypic and crystallize in the K3[Cr(O2)4] type (SG , No. 121). The infrared- and Raman spectra (recorded on powdered samples) are discussed with respect to the internal vibrations of the peroxo-group and the dodecahedral [Ta(O2)4]3− ion. Symmetry coordinates for the [Ta(O2)4]3− ion are given from which the vibrational modes of the O-O stretching vibrations of the O22− groups, the Ta-O stretching vibrations and the Ta-O bending vibrations are deduced.  相似文献   

14.
The present investigation focuses on the structural properties and reactivity of zirconia-supported vanadium oxide catalysts, prepared by equilibrium adsorption in basic (pH 10) or in acid (pH 2.7) conditions with vanadium content up to 6 wt.% (pH 10) and up to 11.6 wt.% (pH 2.7). The samples, heated at 823 K for 5 h in air, were characterized by X-ray diffraction, Raman spectroscopy and TPR, both as prepared and after leaching with an ammonia solution to remove species not anchored to the zirconia surface. Some representative samples were also tested for the n-butane oxidative dehydrogenation (ODH) reaction. Depending on vanadium content, various vanadium species were identified by Raman spectroscopy that reacted differently on exposure to H2. At similar loading, the fraction of vanadium in a dispersed state and thus interacting with the support was higher in samples prepared at pH 10 than in those at pH 2.7. Samples prepared at pH 2.7 contained a higher fraction of large polymeric structures in addition to ZrV2O7 and V2O5.In line with literature data for propane ODH on similar catalysts, our catalytic results suggested that the active sites for the ODH reaction are associated with the V–O–V bonds of the polymeric exposed structures, whereas the Zr–O–V sites favour alkane combustion.  相似文献   

15.
以锐钛矿TiO_2为载体,考察了CeO_2改性对Ag-CeO_2-V_2O_5/TiO_2催化3-甲基吡啶氧化脱甲基性能的影响,并优化了催化剂组成与制备条件.结果表明:Ce掺杂改性不仅能够与V物种作用形成Ce VO_4,而且促进V_2O_5分散,改善活性组分的氧化还原性能,从而提高3-甲基吡啶脱甲基转化率与选择性,改善Ag-V_2O_5/TiO_2催化性能.适宜的催化剂组成为V_2O_5负载量15%,Ce/V的摩尔比0.33,Ag质量分数1.0%.过高的焙烧温度将导致TiO_2载体向金红石型转变,Ag-CeO_2-V_2O_5/TiO_2适宜制备条件为450℃焙烧4 h.  相似文献   

16.
In this article, we report our detailed mechanistic study on the reactions of cyclic-N3 with NO, NO2 at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(d)+ZPVE levels; the reactions of cyclic-N3 with Cl2 was studied at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE levels. Both of the singlet and triplet potential-energy surfaces (PESs) of cyclic-N3 + NO, cyclic-N3 + NO2 and the PES of cyclic-N3 + Cl2 have been depicted. The results indicate that on singlet PESs cyclic-N3 can undergo the barrierless addition–elimination mechanism with NO and NO2 forming the respective dominant products N2 + 1cyclic-NON and 1NNO(O) + N2. Yet the two reactions on triplet PESs are much less likely to take place under room temperature due to the high barriers. For the cyclic-N3 + Cl2 reaction, a Cl-abstraction mechanism was revealed that results in the product cyclic-N3Cl + Cl with an overall barrier as high as 14.7 kcal/mol at CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE level. So the cyclic-N3 radical could be stable against Cl2 at low temperatures in gas phase. The present results can be useful for future experimental investigation on the title reactions.  相似文献   

17.
Single crystals of a new form of L-Ta2O5 with a 19×b superstructure have been synthesised by flux growth. The phase is most likely stabilised by the incorporation of a small amount of lithium (0.14 wt% Li) from the flux. The phase has C-centred monoclinic symmetry with , (), , γ=90.00(1)°. The structure was refined in space group C112/m to R1=0.044 for 814 unique reflections with F>4σ(F). The structure can be described as comprising chains of edge-shared TaO7 pentagonal bipyramids that are regularly folded at (010) planes to give sinusoidal chains along [010]. These chains are interconnected along [100] and [001] by corner sharing, creating inter-chain regions that are occupied by isolated TaO6 octahedra and pairs of corner-shared octahedra. A comparison with published data for high-quality refinements of related structures has led to the development of a general model that can explain the structural chemistry variations in the known L-Ta2O5-related structures. A shorthand notation is presented for representing the structures, based on the sequence along [010] of the interchain octahedra.  相似文献   

18.
Different substitutions, i.e. Sr2+, Ba2+, K+, Nb5+ and V5+, have been performed in the triclinic α-La2W2O9 structure in order to stabilise the high temperature and better ionic conductor cubic β-phase. This approach has been used to try to obtain a new series of ionic conductors with LAMOX-type structure without molybdenum and presumably better redox stability compared to β-La2Mo2O9. Nanocrystalline materials obtained by a freeze-drying precursor method at 600 °C exhibit mainly the β-La2W2O9 structure, however, the triclinic α-form is stabilised as the firing temperature increases and the crystallite size grows. Only high levels of Ba2+ and V5+ substitutions retained the cubic form at room temperature after firing above 1100 °C. However, these phases are metastable above 700 °C, exhibiting an irreversible transformation to the low temperature triclinic α-phase. The synthesis, structure, phase stability, kinetic of phase transformation and electrical conductivity of these materials have been studied in the present report.  相似文献   

19.
利用柠檬酸三钠还原硝酸银制备了银纳米颗粒(AgNPs), 然后通过氨水水解正硅酸乙酯(TEOS)的方法, 在AgNPs上沉积SiO2, 制备出以Ag为核, SiO2为壳的复合纳米颗粒(Ag@SiO2). 调节TEOS用量, 可以控制SiO2层的厚度. 根据AgNPs的局域表面等离激元共振(LSPR)效应, 将制得的Ag@SiO2颗粒用于H2O2的检测, 检测下限为1 μmol/L, 并可以通过控制SiO2层的厚度方便地调节Ag@SiO2颗粒与H2O2反应的速率. 与传统方法相比, 具有简单、快速、成本低的优点. 分别运用TEM、紫外-可见分光光度计对反应前后Ag@SiO2颗粒形貌及反应过程中其LSPR吸收的变化进行了表征.  相似文献   

20.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号