首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Polyaniline/bacterial extracellular polysaccharide (Pn/EPS) nanocomposite was prepared by in situ polymerization of aniline using ammonium peroxydisulfate as oxidant. Transmission electron micrograph showed that the surface of the nanocomposite was rough, providing good possibility for adsorption of Cr(VI). Under optimized conditions, the nanocomposite removed 97.3 % (25 mg L?1) of Cr(VI) from aqueous solution. The Freundlich isotherm model and pseudo-first order rate expression better described the adsorption equilibrium of Pn/EPS nanocomposite. X-ray diffractogram peak for Cr2O3 (2θ = 24.5) in the nanocomposite confirmed the reduction of Cr(VI). Fourier transform infrared spectroscopy pattern of the nanocomposite confirmed the ionic interaction between Cr species and surface functional groups. The results of the study indicate that Pn/EPS nanocomposite could be used for the removal and detoxification of Cr(VI) from aqueous solution.  相似文献   

2.
In this study, clinoptilolite as a natural zeolite which was magnetized using precipitation of maghemite nanoparticles was coated by chitosan and then modified by thylenediamine tetra-acetic acid to add functional groups and its performance in the removal of toxic methylene blue from aqueous solution was investigated. Synthesized magnetic nanocomposite was characterized by VSM, XRD, SEM, and FTIR analyses. The saturation magnetization of the final nanocomposite was obtained as 22.2 emu/g. In addition, the factors affecting adsorption process and its optimization were investigated using response surface methodology and central composite design. Data obtained by different isotherm, adsorption kinetic and thermodynamic models were also studied. The results showed good agreement of these data with the Freundlich isotherm model (R 2 = 0.99), and it was found that adsorption follows the second-order kinetics model (R 2 = 1). Negative values of ΔG and positive values of ΔH obtained from this adsorption thermodynamic study revealed that the methylene blue adsorption process is exothermic and spontaneous. The optimum conditions to ensure maximum adsorption efficiency were determined, and included pH = 5.54, adsorbent amount of 0.03 g, temperature of 31.18 °C, and initial solution concentration of 16.21 mg/l which resulted in a removal efficiency of 99.44%. The results indicated that this nanocomposite can be used as a proper adsorbent for adsorbing methylene blue and other dye contaminants.  相似文献   

3.
Cellulose/nanosilica (CNS) nanocomposite fiber has been synthesized via a novel surface modification of cellulose and nanosilica, prepared from rice husk as a low cost natural source, by anionic and cationic surfactants through electrostatic interaction. The effect of the prepared nanocomposite on the structural, mechanical, thermal and morphological properties of polysulfone nanofiltration membranes was comprehensively studied. The scanning electron microscope image was used to investigate the relationship between solidity aspect and morphological properties qualitatively and quantitatively. From the results, the membrane with 0.25 wt% of CNS fiber shows the highest mechanical strength and thermal stability with a glass transition temperature of about 201 °C. It was found that an increase in the filler content increases the surface roughness of the membranes. The same behavior was observed for hydrophilicity based on contact angle measurements (from 78.7° to 61.5°). The adsorption of dye molecules during the filtration process was studied by batch adsorption experiments obeying Langmuir isotherm (R2 > 0.91). For all samples of fabricated membranes, the rejection of Crystal Violet dye from aqueous solution was higher than 80%.  相似文献   

4.
《中国化学会会志》2017,64(6):627-639
In this work, an alginate–montmorillonite–polyaniline (Alg–MMT–PANI ) nanocomposite (NC) was synthesized and applied for the adsorptive removal of reactive Orange 13 (RO13 ) as a model azo dye compound. The Alg–MMT–PANI NC was prepared by the polymerization of aniline in the presence of Alg–MMT hybrid through in situ polymerization. The optimization and modeling of the removal process was carried out using the response surface methodology (RSM ) based on central composite design (CCD ). Important parameters influencing the adsorption removal of RO13 , including the initial concentration of RO13 , pH , adsorbent dose, and contact time, were selected as input variables for RSM . Furthermore, the adsorption kinetic studies revealed that the experimental data best fitted with a pseudo‐second‐order model. Additionally, adsorption isotherm studies revealed that the obtained data were well fitted to the Langmuir isotherm model and, accordingly, the maximum adsorption capacity, qm , was obtained at level of 111.111 mg/g.  相似文献   

5.
Remediation of toxic dyes from an aqua matrix using novel nanocomposites as adsorbent is an attractive yet challenging task, especially when the adsorption process needs to be operated at near-neutral solution pH. Recently, conducting polymer-based novel nanocomposites have been studied widely for environmental remediation because of their high distinctive surface area, mesoporous nature, easy synthesis process, availability of the low-cost monomer, and comprehensive range of functionality. This research deals with the fabrication and application of manganese ferrite and polyaniline nanocomposite (MnF-PANI-NC) for the ultrasound-assisted adsorption of methyl red (MR) and congo red (CR) dye from binary dye solution at neutral pH. The X-ray diffraction pattern of MnF-PANI-NC confirmed the successful impregnation of manganese ferrite onto polyaniline, and the field emission gun scanning electron microscopy and transmission electron microscopy images revealed the nanoscale formation of this composite. The saturation magnetization of ~20 emu/g endorses the easy magnetic separation of MnF-PANI-NC from dye solution. MnF-PANI-NC has revealed higher adsorptive affinity towards MR and CR dye concerning pure PANI and pure MnF nanoparticles at near-neutral solution pH. Assimilation of ultrasound wavse in this adsorption procedure improved the mass transfer rate significantly, and within 6 min of reaction more than 95% of MR and CR dye removal was achieved. Ultrasound waves also enhanced the equilibrium dye uptake efficiency (more than 95%) of MnF-PANI-NC compared to the adsorption reaction by overhead stirring (40–50%) and shaking (40–60%) for both MR and CR dyes. Kinetic modeling of the experimental data revealed accurate fitting of the pseudo-second-order model in association with intraparticle diffusion. Binary dye adsorption onto MnF-PANI-NC obeyed the Langmuir isotherm model accurately, and maximum adsorption capacities of 294.12 and 317.46 mg/g were observed for MR and CR dyes, respectively.  相似文献   

6.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

7.
A solid-phase microextraction fiber was prepared by polyaniline/graphene oxide nanocomposite as sorbent on the surface of a platinized stainless steel wire using electrospinning technique. The nanocomposite structure was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The polyaniline/graphene oxide nanocomposite fiber was used for the determination of nicotine from tobacco samples using headspace solid-phase microextraction method and gas chromatography–flame ionization detection. Influential experimental variables on the extraction efficiency of nicotine, such as extraction time and temperature, humidity and desorption conditions, were evaluated and optimized. Under the optimal experimental conditions? the limit of detection, linear dynamic range, intraday and inter-days precisions were found to be 0.01 μg g?1, 0.05–700 µg g?1 (R2?=?0.996), 6.9 and 8.1%, respectively. Comparison of the polyaniline/graphene oxide nanocomposite sorbent with polyaniline and commercial fibers shows longer durability, larger capacity and higher extraction efficiency. The polyaniline/graphene oxide nanocomposite fiber was successfully applied for the determination of nicotine in tobacco samples.  相似文献   

8.
This research work involves the dyeing of acrylic fabric with natural dye extracted from date pits powders using Soxhlet extraction process. The effect of dye bath pH, salt concentration, dyeing time and temperature were studied. The optimal dyeing conditions where pH 4, 0 g/L salt, 60 min, and 80 °C. The COD and the BOD5 of the residual dye bath were measured and it was shown from the registered values that the residual dye bath presents an acceptable rate of organic discharge.  相似文献   

9.
Cellulose/chitosan composites were successfully prepared in a new and basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN), by dissolving cellulose and chitosan in 70/30 (w/w) EDA/KSCN at ?19 °C, and then coagulating in methanol. Wide angle X-ray diffraction studies revealed that the EDA/KSCN solvent system is capable of disrupting the hydrogen bonds in both cellulose and chitosan and increase the amorphous regions. Stability tests proved that the composites are stable in acidic aqueous solution due to the hydrogen bonds formed between cellulose and chitosan. This is the first time to dissolve chitosan in a basic-based solvent system and prepare cellulose/chitosan composites in a straightforward way. The adsorption of heavy metal ions (Cu2+, Cd2+, and Pb2+) onto the cellulose/chitosan composites was investigated. The adsorption capacity is highly dependent on pH and the maximum metal uptake was obtained at pH 5.0. Increasing initial metal concentration enhanced the diffusion of metal ions to the composite surface and therefore the metal removal efficiency. Higher percentage of chitosan in the composites also led to higher metal adsorption. The results indicated that the prepared cellulose/chitosan (1:1) composite can adsorb 0.53 mmol/g Cu2+, 0.28 mmol/g Cd2+ and 0.16 mmol/g Pb2+ ions at pH 5.0. The Freundlich model and the pseudo-second-order model were in good agreement with the adsorption isotherms and kinetics, respectively. X-ray photoelectron spectroscopy studies indicated that the binding of heavy metal ions is attributed to the nitrogen atoms of amino groups in chitosan. The composites can be reused for metal removal.  相似文献   

10.
Cheap and efficient adsorbents to remove contaminants of toxic dye molecules from wastewater are strongly in demand for environmental reasons. This study provides a novel design of a monolithic adsorbent from abundant materials via a facile synthetic procedure, which can greatly reduce the problems of the tedious separation of adsorbents from treated wastes. A hierarchically porous cellulose/activated carbon (cellulose/AC) composite monolith was prepared by thermally-induced phase separation of cellulose acetate in the presence of AC, using a mixture of DMF and 1-hexanol, followed by alkaline hydrolysis. The composite monolith had alarge specific surface area with mesopore distribution. It not only showed high uptake capacity towards methylene blue (MB) or rhodamine B (RhB) but could also simultaneously adsorb MB and RhB from their mixture, in which the adsorption of one dye was not influenced by the other one. Remarkable effects of solution pH, initial concentration of dye (C 0), contact time, adsorbent dosage and temperature on the adsorption of MB and RhB onto the composite monolith were demonstrated. The binding data for MB and RhB adsorption on the composite monolith fitted the Freundlich model well, suggesting a heterogeneous surface of the composite monolith. The monolith could retain around 90% of its adsorption capacity after 8 times reuse. These data demonstrate that the cellulose/AC composite monolith has a large potential as a promising adsorbent of low cost and convenient separation for dye in wastewater.  相似文献   

11.
To enhance the degradation of colour and chemical oxygen demand using photocatalytic activity, Graphene–CuO–Co3O4 hybrid nanocomposites were synthesized using an in situ surfactant free facile hydrothermal method. The photocatalytic degradation of synthetic anionic dyes, methyl orange (MO) and Congo red (CR), and industrial textile wastewater dyes under visible light irradiation was evaluated. The synthesized nanocomposite was characterized structurally and morphologically using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscope, and Fourier transform infrared spectroscopy. Evaluation of the colour indicated complete removal at 15 min of irradiation for the MO and CR dyes, with 99% degradation efficiency. The reaction time for the primary effluent wastewater dye was 60 min for 81% dye removal. In contrast, a longer reaction time was required to meet the national discharge regulation for the raw wastewater dye, 300 min for 60% dye removal. The mechanism for dye degradation using the Graphene–CuO–Co3O4 hybrid nanocomposite was elucidated using the Langmuir–Hinshelwood model, and the rate constant and half-life of the degradation process were calculated. The results demonstrate that photocatalytic degradation using a hybrid nanocomposite and visible light irradiation is a sustainable alternative technology for removing colour from wastewater dye.  相似文献   

12.
Hydrogel nanocomposites were synthesized from grafting of acrylamide onto hydroxypropyl methylcellulose using methylenebisacrylamide crosslinker and sodium montmorillonite (Na-MMt) nanoclay. The effect of nanoclay content on the swelling of nanocomposites was investigated and an optimum swelling capacity was obtained at 12.7 wt% of Na-MMt. The effect of salt solutions on the swelling of nanocomposites revealed that the degree of swelling of samples depends only slightly on the salinity. The structure of nanocomposites was characterized by XRD, SEM, FTIR, and TEM techniques. The XRD and TEM results confirmed the exfoliation of Na-MMt nanoclay in nanocomposite matrix. The morphology of the nanocomposites was characterized by SEM technique and according to the results a loose surface was observed. The nanocomposite hydrogels were evaluated to remove cationic crystal violet dye from water. The investigation of the dye adsorption capacity and rate of nanocomposite hydrogels as a function of Na-MMt content revealed that the both adsorption capacity and rate is enhanced as the nanoclay content is increased in nanocomposite composition. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The best fit to the experimental data was obtained with the Langmuir model.  相似文献   

13.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

14.
The adsorption of Cd and Pb ions from palm oil mill effluent on a mesoporous-activated cow bone composite powder has been investigated. Adsorbent was developed from cow bones, coconut shells and zeolite. The composite examined in the present work has a BET surface area of 248.398 m2/g. The optimisation of the removal efficiency of the heavy metals was investigated using central composite design and analysed using response surface methodology. The analysis of variance of the quadratic model signified that the model suitably predicted the uptake of the heavy metal ions at a 95% confidence level. The optimal operating condition was recorded at pH 4, 50 rpm, within 24 h and 1 mm of particle size and 12.5 gL?1 of adsorbent dosage. The characteristics of the composite were investigated using the Fourier transform irradiation. The morphology and chemical composition of composite was examined using the scanning electron microscopy equipped with energy dispersive x-ray. Characterisation study was conducted before and after the adsorption process. The results obtained illustrated that the removal of cadmium and lead from POME was influenced by the functional groups available on the surface of the composite. The carboxyl and hydroxyl groups are mainly responsible for the removal of cadmium and lead through chelating process. The point of zero charge (pHpzc) revealed that the adsorbent contained acidic sites with negatively charge surface which influenced the adsorption process. The experimental data of the heavy metals of Cd and Pb investigated were fitted to the Langmuir and Freundlich models. The result revealed that the adsorption equilibrium data fitted better to the Langmuir model for the adsorption Cd and to the Freundlich model for the adsorption of Pb.  相似文献   

15.
Batch adsorption experiments were carried out for the removal of malachite green (MG) cationic dye from aqueous solution using novel hydrogel nanocomposite that was prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC) biopolymer in the presence of a crosslinking agent, a free radical initiator and aminosilica-functionalized TiO2 nanoparticles (κC-g-PAA/TiO2–NH2). The factors influencing adsorption capacity of the adsorbents such as initial pH value (pH0) of the dye solutions, TiO2–NH2 content (wt%), initial concentration of the dye, amount of adsorbents, and temperature were investigated. The adsorption capacity of hydrogel nanocomposite for MG was compared with hydrogel. The adsorption behaviors of both adsorbents showed that the adsorption kinetics and isotherms were in good agreement with a pseudo-second-order equation and the Langmuir equation. The high adsorption capacity (q m= 666–833 (mg/g)) and the favorable heterogeneity factor (n = 1.2–1.5) calculated from isotherm equations show the efficiency of the novel adsorbents.  相似文献   

16.
In this work, bacterial cellulose nanofibers were produced by using the Gluconacetobacter hansenii HE1 strain. These nanofibers were derivatized with dye affinity ligand Reactive Green 5, and these newly synthesized dye-attached nanofibers were used for affinity adsorption of urease. Reactive Green 5-attached nanofibers were characterized by Fourier transform infrared spectroscopy, SEM, and energy-dispersive x-ray spectroscopy analysis. Some adsorption conditions which significantly affect the adsorption efficiency were investigated. The maximum urease adsorption capacity was found to be 240 mg/g nanofiber in pH 6.0 and at room temperature. Dye-free plain nanofibers also used for studying nonspecific urease adsorption onto plain nanofibers and nonspecific adsorption were found to be negligible (3.5 mg/g nanofiber). Prepared dye-attached nanofibers can be used in five successive adsorption/desorption steps without any decrease in their urease adsorption capacity. The desorption rate of the adsorbed urease was found to be 98.9 %. The activity of the urease was also investigated, and it was found that free and desorbed urease from the dye-attached nanofibers showed similar specific activity.  相似文献   

17.
The removal of methyl green (MG) dye from aqueous solutions using acid- or alkali-treated Pinus brutia cones (PBH and PBN) waste was investigated in this work. Adsorption removal of MG was conducted at natural pH, namely, 4.5 ± 0.10 for PBH and near 4.8 ± 0.10 for PBN. The pseudo-second-order model appeared to be the most appropriate to describe the adsorption process of MG on both PBN and PBH with a correlation coefficient R2 > 0.999. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P. brutia cones with a correlation factor R2 > 0.999. The ionic strength (presence of other ions: Cl?, Na+, and SO42?) also influences the adsorption due to the change in the surface properties; it had a negative impact on the adsorption of MG on these two supports. A reduction of 68.5% of the adsorption capacity for an equilibrium dye concentration Ce of 30 mg/L was found for the PBH; while with PBN no significant influence of the ionic strength on adsorption was observed, especially in the presence of NaCl for dye concentrations superior to 120 mg L?1.  相似文献   

18.
In recent decades, industrial wastewater discharge containing toxic or hazardous manufactured dyes has risen tremendously, creating a serious environmental threat. A new hybrid adsorbent, [email protected]–Mn–Zr synthesized by mixing Fe–Mn–Zr metal oxide composite with polyaniline (PANI), was used to study methyl red (MR) dye removal from aqueous solution. The adsorption process was observed to be influenced by the sonication time, dose of [email protected]–Mn–Zr, and initial concentration of MR dye. At an initial MR dye concentration of 25 mg/L, 0.25 g/L of [email protected]–Mn–Zr dose, 15 min of sonication, and pH 7.0, the maximum MR dye adsorption efficiency of 90.34% was achieved. Kinetic analysis was performed using five different kinetic models, which shows that the pseudo-second-order kinetic model had the best fit among the five models. The Langmuir isotherm best fits the adsorption experiments at pH 7.0, yielding a significant MR dye uptake capacity of 434.78 mgg?1. The most significant adsorption mechanisms that have been observed in uptake of MR dye onto [email protected]–Mn–Zr were electrostatic attraction, π-π bond interactions and hydrogen bonding. Response surface optimization study was performed for optimizing the experimental conditions from which maximum dye removal of 98.19% was obtained at contact time of 12 min, initial MR dye concentration of 15 mg/L and [email protected]–Mn–Zr dose of 0.4 g/L. Use of real wastewater and water samples suggest that there is only 6–19% reduction in the dye removal efficiency as compared to the blank or controlled experiments conducted with deionized water.  相似文献   

19.
Zinc phosphate (Zn3(PO4)2) nanocrystals were synthesized and used for making conducting polyaniline/nano-zinc phosphate composite by chemical oxidative method. The product was characterized by UV–visible absorption spectroscopy. The crystal structure, morphology and thermal stability of the product were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermo gravimetric analysis, respectively. The epoxy-based paint containing conducting polyaniline/nano-zinc phosphate composite pigment was applied on low-carbon steel samples. Corrosion protection performance of the painted low-carbon steel samples in 3.5 mass % sodium chloride solution was evaluated using electrochemical technique. Transmission electron microscopic image revealed the formation of core shell structure of the composite. Composite was found to be more thermally stable than the conducting polyaniline. The corrosion rate of conducting polyaniline/nano-zinc phosphate-painted low-carbon steel was found to be 5.1 × 10?4 mm per year, about 34 times lower than that of unpainted low-carbon steel and 10 times lower than that of epoxy nano-zinc phosphate paint-coated steel. The study reveals the possibility of using conducting polyaniline/nano-zinc phosphate as a pigment for corrosion protection.  相似文献   

20.
Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号