首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four methods for the calculation of electron Stark width of atomic spectral lines are evaluated. All methods provide estimates to the same order of magnitude, but no technique is best for all spectral lines. The success of a method depends on the nature and extent of knowledge of properties of the excited state.Use of the appropriate method will allow the computation of a meaningful estimate for the Stark width of any spectral line of interest in an analytical plasma.  相似文献   

2.
3.
4.
Stark deceleration is one of the few methods that can be used to slow polyatomic molecules. We present calculations of Stark shift energies, a quantitative analysis of nonadiabatic transition probabilities, and orientational distribution functions applicable to typical Stark slowing conditions for the two small asymmetric rotors nitromethane and acetaldehyde. We show that asymmetric polyatomic molecules are good candidates for Stark slowing.  相似文献   

5.
《Chemical physics letters》1987,133(3):276-277
The Hamiltonian used in recent calculations (by Silverman, Bishop and others) of the electrical properties of one-electron diatomic molecules is compared, in the adiabatic approximation, with the Stark Hamiltonian.  相似文献   

6.
《Chemical physics》2005,308(3):259-266
A new ground state potential energy surface has been developed for the F+H2 reaction. Using the UCCSD(T) method, ab initio calculations were performed for 786 geometries located mainly in the exit channel of the reaction. The new data was used to correct exit channel errors that have become apparent in the potential energy surface of Stark and Werner [J. Chem. Phys. 104 (1996) 6515]. While the entrance channel and saddlepoint properties of the Stark–Werner surface are unchanged on the new potential, the exit channel behavior is more satisfactory. The exothermicity on the new surface is much closer to the experimental value. The new surface also greatly diminishes the exit channel van der Waals well that was too pronounced on the Stark–Werner surface. Several preliminary dynamical scattering calculations were carried out using the new surface for total angular momentum equal to zero for F+H2 and F+HD. It is found that gross features of the reaction dynamics are quite similar to those predicted by the Stark–Werner surface, in particular the reactive resonance for F+HD and F+H2 survive. However, the most of the exit channel van der Waals resonances disappear on the new surface. It is predicted that the differential cross-sections at low collision energy for the F+H2 reaction may be drastically modified from the predictions based on the Stark–Werner surface.  相似文献   

7.
The vibrational Stark effect together with nuclear relaxation and vibrational contributions to the static molecular electric properties of the N2O molecule are computed using ab initio molecular orbital thoery. Contributions to the molecular properties are computed by finite-difference techniques involving the energy vs. the uniform electric-field strength. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The carbon monoxide molecule is used to probe the electronic properties of Ru/C and Se surface-modified Ru/C nanocatalysts. Coordination of a Se to a Ru surface strongly affects the vibrational properties and reactivity of the CO adsorbed. Marked alteration of the CO stretching frequency; increase of the Stark tuning rate for C-O vibration; and a positive shift of the onset of CO oxidation are observed for Se-modified Ru particles and attributed to the electronic effect of Se.  相似文献   

9.
Fucoxanthin chlorophyll-a/c 2 protein (FCP), the membrane-intrinsic light harvesting complex from the diatom Cyclotella meneghiniana, is characterized by Stark spectroscopy to obtain a quantitative measure of the excited-state dipolar properties of the constituent pigments. The electro-optical properties of the carotenoid fucoxanthin (Fx), the primary light harvester in FCP, were determined from the Stark spectrum measured in a MeTHF glass (77 K) and compared to the results from electronic-structure calculations. On photon absorption by Fx, a 17 D change in the static dipole moment (|Delta mu|exp), and a somewhat larger |Delta mu|exp at the red edge, are measured for the S 0 --> S 2 (1 (1)A g (-)-like -->1 (1)B u *+-like) transition. The large change in dipole moment indicates that Fx undergoes photoinduced charge transfer (CT), and underscores the influence of the S 2 state on the polarity-dependent excited-state dynamics of Fx that has so far been attributed to, and discussed in terms of, the S 0 and the S 1/ICT states. MNDO-PSDCI and SACCI-CISD calculations indicate that the 1 (1)B u (*+)-like state intrinsically possesses a dipole moment much smaller than the 2 (1)A g (*-)-like state, suggesting that solvent fields promote the mixing of these two states and could account for the large dipole moments measured here for the S 0 --> S 2 transition. These CT properties of the 1 (1)B u (*+)-like state of Fx are further enhanced in the protein and underpin its photosynthetic capabilities for light harvesting and energy transfer (ET). In FCP, the CT properties of the Fx's vary according to the energetic position: between 450 and 500 nm there appear to be two sets of Fx's that exhibit |Delta mu| exp values on the order of 5 and 15 D, whereas the red-most Fx's, that are very efficient in ET to chlorophyll-a (Chl-a), exhibit strikingly large |Delta mu| exp values on the order of 40 D. Such magnitudes of |Delta mu| exp suggest a mechanism that enhances Coulombic coupling to promote ET from the S 2 state of Fx to Chl-a. These three sets of Fx's, including a fourth red Fx, are identified by fitting the Stark spectrum of FCP with the Stark spectrum of Fx in MeTHF. In contrast to the Fx's in the protein, the electrostatic properties of the Chl's in FCP are comparatively much smaller. Notably, for the Q y band of Chl-a, a |Delta mu| exp of 0.92 D and a change in polarizability ( Delta alpha exp) of 20 A (3), indicate that the Chl-a's are monomeric in nature and decoupled from each other.  相似文献   

10.
We report measured Stark shifts and widths of neutral flourine and chlorine lines. Wall stabilized arc is used as a plasma source. Electron densities 2–4×1022 m?3 are determined from the width of theH β line and electron temperatures 9500–10 000 K from plasma composition data. Experimental results for FI and ClI Stark widths and FI Stark shifts agree within 10% with semiclassical calculations. ClI Stark shifts are systematically smaller for about 20% than theoretical data with the only exception of the line from multiplet no. 15 where the discrepancy goes up to 49%. Results of investigation of similarities and regularities of Stark widths are in agreement with the study of Wiese and Konjevi?. Comparison of experimental Stark shifts shows certain types of regularities.  相似文献   

11.
We report results of an experimental study of the Stark broadening and shift of fourteen and eight neutral iodine lines, respectively, in a plasma wall stabilized arc. An electron density of about 2 × 1022 m?3 was determined from the width of Hα line, while an electron temperature about 9300 K was derived from plasma composition data. The agreement within 40% of both experimental Stark widths and shifts with results of simple theoretical approach by Dimitrijevi? and Konjevi? is found. Results of the investigation of similarities of neutral iodine Stark widths are in agreement with the study of Wiese and Konjevi?. Comparison of experimental Stark shift shows similar types of regularities. Comparisons of Stark widths along analogous transitions of halogene atoms show an increase of widths from fluorine to iodine. It has been demonstrated also that Stark shifts for the same transitions show similar behaviour.  相似文献   

12.
Stark widths and shifts of neutral and ionized heavy atom spectral lines have been measured and calculated. The Stark parameters of three SnI (284.0, 286.3 and 303.4 nm), five HgII (226.2, 398.4, 222.5, 615.0 and 326.4 nm), two PbII (220.4 and 438.6 nm) and one HgIII (235.4 nm) spectral lines were measured for the first time except the Stark widths of one HgII (398.4 nm) and one PbII (438.6 nm) line. Stark width values for a number of corresponding transitions were calculated on the bases of semiclassical and semiempirical formulae.  相似文献   

13.
Absorption and fluorescence from single molecules can be tuned by applying an external electric field – a phenomenon known as the Stark effect. A linear Stark effect is associated to a lack of centrosymmetry of the guest in the host matrix. Centrosymmetric guests can display a linear Stark effect in disordered matrices, but the response of individual guest molecules is often relatively weak and non-uniform, with a broad distribution of the Stark coefficients. Here we introduce a novel single-molecule host-guest system, dibenzoterrylene (DBT) in 2,3-dibromonaphthalene (DBN) crystal. Fluorescent DBT molecules show excellent spectral stability with a large linear Stark effect, of the order of 1.5 GHz/kVcm−1, corresponding to an electric dipole moment change of around 2 D. Remarkably, when the electric field is aligned with the a crystal axis, nearly all DBT molecules show either positive or negative Stark shifts with similar absolute values. These results are consistent with quantum chemistry calculations. Those indicate that DBT substitutes three DBN molecules along the a-axis, giving rise to eight equivalent embedding sites, related by the three glide planes of the orthorhombic crystal. The static dipole moment of DBT molecules is created by host-induced breaking of the inversion symmetry. This new host–guest system is promising for applications that require a high sensitivity of fluorescent emitters to electric fields, for example to probe weak electric fields.  相似文献   

14.
Permanent electric dipole moments and magnetic g factors for uranium monoxide (UO) have been determined from analyses of optical Stark and Zeeman spectra recorded at a spectral resolution that approaches the natural linewidth limit. Numerous branch features in the previously characterized [L. A. Kaledin et al., J. Mol. Spectrosc. 164, 27 (1994)] (0,0) [18403]5-X(1)4 and (0,0) [18404]5-X(1)4 electronic transitions were recorded in the presence of tunable static electric (Stark effect) or magnetic (Zeeman effect) fields. The lines exhibited unusually large Zeeman tuning effects. A ligand field model and an ab initio electronic structure calculation [R. Tyagi, Ph.D. thesis, The Ohio State University (2005)] were used to interpret the ground state properties. The results indicate that the low energy electronic states of UO are sufficiently ionic for the meaningful application of ligand field theory models. The dipole moments and g factors were distinctly different for the three electronic states examined, which implies that these properties may be used to deduce the underlying electronic state configurations.  相似文献   

15.
16.
Changes in the matrix electric field in a protein, due for example to mutations or structural fluctuations, can be correlated with changes in the vibrational transition frequencies of suitable chromophores measured by IR spectroscopy through the Stark tuning rate. To make this correlation, the Stark tuning rate must be known from experiment or theory. In this paper, density functional theory at the B3LYP/TZV level of theory is used to compute the Stark tuning rate of adducts of heme porphyrin, namely, -CO, -CN, and -NO+ compounds. The results are compared with the corresponding vibrational frequencies-field dependencies from vibrational Stark spectroscopy of heme-proteins. The zero-field computed Stark tuning rate of 1.3 cm-1/MV/cm for heme-CO is in agreement with experiment, where typically the rate is 2.4/f cm-1/MV/cm for myoglobin, where f is a local field correction between 1.1 and 1.4. Several small nitrile, carbonyl, and dinitrile molecules were studied to rationalize the findings for the heme-adducted models. Here, the higher B3LYP/6-311++G(2d,2p) level of theory could be used so the agreement with recent experimental results is even better than for heme-adducted groups.  相似文献   

17.
We have studied electrochemical vibrational and energy properties of CO/Pt(111) in the framework of periodic density functional theory (DFT) calculations. We have used a modified version of the previously developed Filhol-Neurock method to correct the unphysical contributions arising from homogeneous background countercharge in the case of thick metallic slabs. The stability of different CO adsorption sites on Pt(111) (Top, Bridge, Hcp, Fcc) has been studied at constant electric field. The energies are dominated by the surface dipole interaction with the external electric field: a strong positive electric field favors the surfaces with the lower dipole moment (that correspond to the ones with the lower coordination). The Stark tuning slope of the CO stretching frequency for a Top site was calculated for different surface coverages in very good agreement with both experimental and other theoretical results. Finally, we have performed an analysis of the origin of Stark shifts showing that the total Stark effect can be split into two competing components. The first one corresponds to the direct effect of charging on the C-O chemical bond: it is referred as an electrochemical effect. The second is the consequence of the surface dipole interaction with the applied electric field that modifies the C-O distance, inducing a change of the C-O force constant because of C-O bond anharmonicity: it is referred as the electromechanical effect. In the CO/Pt(111) case, the dominant contribution is electromechanical. The electrochemical contribution is very small because the electronic system involved in the surface charging is mostly non-bonding as analyzed by looking at the surface Fukui function.  相似文献   

18.
We have measured the Stark shift of the A2Pi(1/2)-X2Sigma+ transition in YbF. We use a molecular beam triple resonance method, with two laser transitions acting as pump and probe, assisted by an rf transition that tags a single hyperfine transition of the X state. After subtracting the known ground state Stark shift, we obtain a value of 70.3(1.5) Hz/(V/cm)2 for the static electric polarizability of the state A2Pi(1/2) (J=1/2),f by fitting our data to a purely quadratic Stark shift in the interval 0-5 kV/cm. A more exact analysis that does not assume a perfectly quadratic Stark effect yields the value mu(e)=2.48(3) D for the electric dipole moment of the A2Pi(1/2)(v=0) state.  相似文献   

19.
The physics of the two-photon absorption process is investigated for a three-state system. The density-matrix equations for the two-photon interaction are solved in the steady-state limit assuming that the pump laser radiation is monochromatic. Collisional broadening, saturation, and Stark shifting of the two-photon resonance are investigated in detail by numerical solution of the steady-state density-matrix equations. Analytical expressions for the saturation intensity and the Stark shift are derived for the case where the single-photon transitions between the intermediate state and the initial and final states are far from resonance with the pump laser. For this case, it is found that the direction of the Stark shift is dependent on the relative magnitudes of the dipole-moment matrix elements for the single-photon transitions that couple the intermediate state with the initial and final states. Saturation and Stark shifting are also investigated for the case where the single-photon transitions between the intermediate state and the initial and final states are close to resonance with the pump laser.  相似文献   

20.
The theory of second-order Stark effect in 1Σ states of heteronuclear diatomic molecules is thoroughly reviewed. The rigorous treatment given demonstrates that by introducing rotational, vibrational and electronic branch polarizabilities, the intrinsic character of the second-order Stark effect in diatomic molecules can be shown to be related more closely to polarizabilities than to dipole moments. The well-known expression for the Stark shift in 1Σ levels which is dominated by the square of the dipole moment is only a crude, though sufficient approximation whenever large dipole moments are involved. For small dipole moments, however, this approximation is likely to fail, leading to an erroneous determination of such dipole moments. In the limiting case of negligible influence of the molecular rotation on the vibronic matrix elements, the arithmetic mean of the electronic branch polarizabilities turns out to be equal to the well-known static electronic polarizabilities α and α. The results are applied to the interpretation of the Stark splitting in the A1Σ+, υ′ = 5, J′ = 1 level of 7LiH, recently determined by Stark quantum-beat spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号