首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrolyte composition is critical in optimizing separation and detection of ions by capillary electrophoresis. The parameters which must be considered when designing an electrolyte system for capillary electrophoresis include electrophoretic mobility of electrolyte constituents and analytes, detection mode, and compatibility of electrolyte constituents with one another. An electrolyte system based on pyromellitic acid is well suited for use with indirect photometric detection, and provides excellent separations of anions. The ability to modify the electrophoretic mobility of pyromellitic acid as a function of ph provides flexibility in matching electrophoretic mobilities of analytes. Additionally, the use of alkyl amines as electroosmotic flow modifiers allows the rapid separation of anions by reversing the direction of electroosmotic flow in a fused-silica capillary. The optimization of a capillary electrophoresis electrolyte for anion analysis is also discussed in terms of pH, ionic strength and applied voltage. The effect of organic solvent on separation selectivity is also discussed.  相似文献   

2.
A hydrophilic polymer, poly(vinylpyrrolidone) (PVP), was employed for suppressing the electroosmotic flow (EOF). A capillary was filled with aqueous PVP solution for coating the capillary wall with PVP; the PVP solution was then replaced by a migration buffer solution containing no PVP. Three types of PVP with different molecular weights were examined. The EOF was suppressed more effectively as the molecular weight of PVP increased. The EOF in the coated capillary was approximately 10-fold smaller than that of a bare capillary and was constant in the pH range of 6-8. The suppressed EOF was stable even when no PVP was added to the migration buffer. However, the EOF increased significantly when sodium dodecyl sulfate was added into the migration buffer. The method was applied for determining the electrophoretic mobilities of inorganic anions that have negative electrophoretic mobilities larger than the electroosmotic mobility of the bare capillary. A novel method for determining the electrophoretic mobilities was proposed based on the linear relationship between electric current and electrophoretic mobility. The electrophoretic mobility was proportional to the electric current. Therefore, the intercept of the regression equation represents the electrophoretic mobility at room temperature. The electrophoretic mobilities were in good agreement with the absolute electrophoretic mobilities.  相似文献   

3.
Kim B  Chung DS 《Electrophoresis》2002,23(1):49-55
Highly sensitive nonaqueous capillary electrophoresis of weakly acidic organic compounds has been performed using methanol as the run buffer solvent. Methanol provided appropriate suppression of the electroosmotic flow and an increase in the electrophoretic mobilities of anionic solutes compared to water. These two effects allowed large-volume stacking using the electroosmotic flow pump (LVSEP) to be achieved for larger anions using a bare fused-silica capillary under an electric field of reverse polarity, whereas only fast-moving small anions were previously known to be suitable for LVSEP in aqueous media. A field-enhanced sample injection of an additional amount of analytes during the solvent plug removal further enhanced the limits of detection to below the nanomolar range with conventional UV absorption detection. Under optimum conditions, excellent linear responses and reproducibility in the migration times together with the corrected peak areas for ten analytes were obtained in the concentration range of 10-100 nM.  相似文献   

4.
Catecholamines were analysed in aqueous and alcoholic non-aqueous solutions by capillary electrophoresis and capillary electrophoresis-mass spectrometry using sheathless nanospray coupling. Decreases in the electrophoretic mobilities of the catecholamines and in the electroosmotic mobilities were observed from water to 1-propanol. Separations were more efficient in all non-aqueous media than in water. The diffusion coefficients of the catecholamines in the different media were determined. The solvent had little effect on the sensitivity of the UV or MS detection. Both methods were successfully applied to the analysis of urine samples.  相似文献   

5.
Inorganic anions are almost always determined by capillary electrophoresis (CE) at an alkaline pH, so the analytes will be fully ionized. However, a long-chain quaternary ammonium salt usually must be added as a flow modifier to the carrier electrolyte to reverse the direction of the electroosmotic flow. By working at a sufficiently acidic pH, the electroosmotic flow in fused-silica capillaries is virtually eliminated, and anions can be separated simply by differences in their electrophoretic mobilities. Excellent separations were obtained for AuCl4 and the chloro complexes of platinum group elements in HCl solution at pH 2.0 to 2.4. No additional buffer or flow modifier was needed. This CE technique is an excellent way to follow slow hydrolytic reactions in which one or more of the chloride ligands is replaced by water. Sharp peaks and good separations were also obtained for MnO4, VO3, chromate, molybdate, ferrocyanide, ferricyanide and stable complex ions such as chromium oxalate (CrO33−).  相似文献   

6.
The influence of the electroosmotic flow profile on the efficiency and resolution of capillary electrophoresis is studied. The mathematical model is formulated and the set of equations is solved numerically. The results of the analysis are applicable to a wide range of buffer concentrations and capillary diameters. The temperature dependence of electrophoretic mobility, viscosity and thermal conductivity and the dependence of electrical conductivity on temperature and ion concentration in the double layer are taken into account. It is shown that there exists a region of buffer concentrations and capillary diameters where the influence of the electroosmotic flow profile on the efficiency and resolution is much greater than that of the temperature dependence of the electrophoretic mobility. The results are especially essential for small buffer concentrations or capillary diameters comparable with the double electrical layer thickness.  相似文献   

7.
电解质溶液组成对低分子量阴离子毛细管电泳分离的影响   总被引:3,自引:0,他引:3  
傅小芸  吕建德 《分析化学》1997,25(6):704-707
研究了毛细管电泳间接紫外检测法测定低分子量阴离子时电解质溶液中背景电解质、电渗流改性剂、pH值、有机溶剂等对分离的影响;比较了铬酸根、邻苯二甲酸根、苯甲酸根3种背景离子对不同迁移率阴离子分离的影响,并对间接紫外检测的定量基础及灵敏度进行了讨论;考察了3种不同长链烷基三甲基季铵盐电渗流改性剂浓度对阴离子迁移时间和电渗迁移率的影响,结果表明电渗流的改性效果与烷基链的长度有关;pH影响阴离子的有效迁移率  相似文献   

8.
Durkin D  Foley JP 《Electrophoresis》2000,21(10):1997-2009
The concept of dual opposite injection in capillary electrophoresis (DOI-CE) for the simultaneous separation, under conditions of suppressed electroosmotic flow, of anionic and cationic compounds with no bias in resolution and analysis time, is extended to a higher pH range in a zone electrophoresis mode (DOI-CZE). A new DOI-CE separation mode based on electrokinetic chromatography is also introduced (DOI-EKC). Whereas conventional CZE and DOI-CZE are limited to the separation of charged compounds with different electrophoretic mobilities, DOI-EKC is shown to be capable of separating compounds with the same or similar electrophoretic mobilities. In contrast to conventional EKC with charged pseudostationary phases that often interact too strongly with analytes of opposite charge, the neutral pseudostationary phases appropriate for DOI-EKC are simultaneously compatible with anionic and cationic compounds. This work describes two buffer additives that dynamically suppress electroosmotic flow (EOF) at a higher pH (6.5) than in a previous study (4.4), thus allowing DOI-CZE of several pharmaceutical bases and weakly acidic positional isomers. Several DOI-EKC systems based on nonionic (10 lauryl ether, Brij 35) or zwitterionic (SB-12, CAS U) micelles, or nonionic vesicles (Brij 30) are examined using a six-component test mixture that is difficult to separate by CZE or DOI-CZE. The effect of electromigration dispersion on peak shape and efficiency, and the effect of surfactant concentration on retention, selectivity, and efficiency are described.  相似文献   

9.
The separation and simultaneous determination of doxorubicin, daunorubicin and idarubicin was investigated using capillary electrophoresis with laser-induced fluorescence detection. Because the three anthracycline antibiotics were similar in structure and mass, careful manipulation of the electroosmotic flow and electrophoretic mobilities was required. A buffer consisting of 100 mM borate, adjusted to pH 9.5, containing 30% acetonitrile was found to provide a very efficient and stable electrophoretic system for the analysis of the three anthracyclines. The method was applied to the determination of three anthracyclines in serum samples. Responses were linear in the range of 10-500 ng.mL-1 and the detection limits were lower than 0.9 ng.mL-1.  相似文献   

10.
We present an experimental study of the effect of pH, ionic strength, and concentrations of the electroosmotic flow (EOF)-suppressing polymer polyvinylpyrrolidone (PVP) on the electrophoretic mobilities of commonly used fluorescent dyes (fluorescein, Rhodamine 6G, and Alexa Fluor 488). We performed on-chip capillary zone electrophoresis experiments to directly quantify the effective electrophoretic mobility. We use Rhodamine B as a fluorescent neutral marker (to quantify EOF) and CCD detection. We also report relevant acid dissociation constants and analyte diffusivities based on our absolute estimate (as per Nernst-Einstein diffusion). We perform well-controlled experiments in a pH range of 3-11 and ionic strengths ranging from 30 to 90 mM. We account for the influence of ionic strength on the electrophoretic transport of sample analytes through the Onsager and Fuoss theory extended for finite radii ions to obtain the absolute mobility of the fluorophores. Lastly, we briefly explore the effect of PVP on adsorption-desorption dynamics of all three analytes, with particular attention to cationic R6G.  相似文献   

11.
Differences in the surface charges of bacteria can be exploited for their separation by capillary electrophoresis. Because of their low electrophoretic mobility, the separation is not always easy to perform, especially in the presence of the electroosmotic flow. Elimination of electroosmotic flow by capillary wall modification with γ‐(trimethoxysilyl)propyl methacrylate followed by acrylamide bonding permits separation over a distance of 8.5 cm.  相似文献   

12.
Nonaqueous solvents are interesting media for capillary zone electrophoresis as they can affect all relevant parameters governing the separation of sample zones. However, for a rational planning of the working conditions and an appropriate interpretation of the results obtained, the basic principles of ion migration and zone dispersion must be understood. Many solvent induced effects need to be carefully considered and recognized before full exploitation of nonaqueous solvents can take place. It is the goal of this overview to present the fundamental physicochemical aspects of capillary zone electrophoresis in nonaqueous solvent systems. Therefore, the detailed discussion is related to the effect of organic solvents on electrophoretic mobilities (based on the theory of conductance), acid-base dissociation behavior (based on the transfer activity coefficient and medium effect), pH, separation efficiency (with regard to mobility and diffusion coefficient in dilute solutions), resolution, and electroosmotic flow.  相似文献   

13.
Ion-ion interactions between anions and their pairing ions in aqueous solutions were studied through the measurements of electrophoretic mobilities of analyte ions in capillary zone electrophoresis, where the electrophoretic method for the analysis of ion association reaction is shown to be more useful than the conductometric method widely used in the analysis of the reactions. The electrophoretic mobility of monovalent inorganic anions was almost identical even when the concentrations of alkali metal ions and quaternary ammonium ions in the migrating solution were varied up to 15 mM. On the other hand, the electrophoretic mobility of organic anions, such as monovalent and divalent anions, decreased with increasing concentrations of quaternary ammonium ions. Changes in the electrophoretic mobilities were analyzed by a non-linear least-squares method giving ion association constants. The results indicate that the proposed method is applicable to the analysis of such reactions to give the mobility change. The ion association constants obtained in an aqueous solution were related to the extraction constants of the ion associates, and the contributions of the association process and the distribution process were clarified.  相似文献   

14.
Cationic polyelectrolyte of chitosan was used for the reversal of electroosmotic flow in capillary zone electrophoresis. The chitosan was dissolved in acetic acid solution, and stable electroosmotic flow was obtained at the chitosan concentrations between 50 and 300 microg/mL. Separation of inorganic anions was carried out using the dynamically coated capillary by capillary zone electrophoresis. Nine kinds of anions were separated and detected with the capillary. The electrophoretic mobility of the analyte anions decreased with increasing concentrations of chitosan in the migrating solution through ion-ion interaction, but the migration order of the analyte anions was not changed in the concentration range of the chitosan examined. The signal shape for the analyte anions was developed by using field-enhanced sample stacking with 10 mM sodium sulfate.  相似文献   

15.
Capillary electrophoresis (CE) with a water-soluble ion-exchange polymer in the background electrolyte is very efficient for the separation of organic and inorganic anions because the ion-exchange selectivity, as well as differences in electrophoretic mobility, can be used for separating sample ions. Poly(diallyldimethylammonium chloride) (PDDAC) was employed for this purpose. A very stable electroosmotic flow was obtained between pH 2.3 and 8.5 due to the strong adsorption of PDDAC onto the capillary wall. The effect of ion exchange on the migration of sample anions and their separation was controlled by varying the concentration of PDDAC, the concentration and the type of salt used in the CE background electrolyte. Addition of organic solvent (e.g., acetonitrile) could also modify the sample migration and the separation. Baseline separations were obtained for anions with very similar mobilities, such as bromide and iodide, naphthalenesulfonates, and bi- and tricarboxylic acids. Typical separation efficiencies were between 195,000 and 429,000 theoretical plates per meter. Ten replicate separations gave an average RSD of 1.0% for migration times of the sample anions studied. Excellent separations were obtained for a variety of samples, including a separation of 17 inorganic and organic anions in less than 6 min.  相似文献   

16.
UV-absorbing neutral substances are commonly used as markers of mean electroosmotic flow in capillary electrophoresis for their zero electrophoretic mobility in an electric field. However, some of these markers can interact with background electrolyte components and migrate at a different velocity than the electroosmotic flow. Thus, we tested 11 markers primarily varying in their degree of methylation and type of central atom in combination with five background electrolyte cations differing in their ionic radii and surface charge density, measuring the relative electrophoretic mobility using thiourea as a reference marker. Our results from this set of experiments showed some general trends in the mobilization of the markers based on the effects of marker structure and type of background electrolyte cation on the relative electrophoretic mobility. As an example, the effects of an inadequate choice of marker on analyte identification were illustrated in the electrophoretic separation of glucosinolates. Therefore, our findings may help electrophoretists appropriately select electroosmotic flow markers for various electrophoretic systems.  相似文献   

17.
The influence of separation conditions on peak broadening is usually estimated by the number of theoretical plates. Using the data available in literature and experimental data, it is shown that in pressure‐assisted capillary electrophoresis the plate number is not directly related to the separation capability of conditions used. The experiments at different electrolyte flow velocities demonstrate that a higher plate number (the best separation efficiency) can be obtained with a lower peak resolution. Since ions are separated by electrophoresis due to the difference in electrophoretic mobilities, the peak width in terms of electrophoretic mobility is suggested as a new peak broadening parameter describing the separation capability of the conditions used. The parameter can be calculated using the tailing factor and the temporal peak width at 5% of the peak height. A simple equation for the resolution calculation is derived using the parameter. The advantage of the peak width in terms of mobility over other parameters is shown. The new parameter is recommended to be used not only in pressure‐assisted capillary electrophoresis but also in general capillary electrophoresis when in a number of runs the virtual separative migration distance and separation capability of the conditions used change widely.  相似文献   

18.
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.  相似文献   

19.
At concentrations of 100 mM or higher the chemical nature of both the cation and anion in the background electrolyte (BGE) can be varied to manipulate the migration times of protonated aniline cations. Significant differences were noted with Li+, Na+ and K+ for capillary electrophoretic runs carried out at pH 3. However, much greater differences in migration times were observed at acidic pH values when the BGE contained protonated cations of aliphatic amines. Analyte migration became progressively slower in the series: methylamine, diethylamine, diethylamino ethanol and triethylamine. A major part of this effect was attributed to an opposing electroosmotic flow (EOF) resulting from a positively-charged coating of the capillary surface with the amine cations in the BGE via a dynamic equilibrium. The amine cations also interact in solution with the analyte ions to reduce their electrophoretic mobilities. Migration times of anilines could be varied systematically over a broad range according to the BGE amine cation selected. Excellent separations of seven closely-related anilines were obtained with the new system.  相似文献   

20.
预测毛细管区带电泳有效淌度的支持向量回归建模方法   总被引:3,自引:0,他引:3  
康宇飞  瞿海斌  沈朋  程翼宇 《分析化学》2004,32(9):1151-1155
提出预测毛细管电泳迁移行为的支持向量回归建模方法。以核苷为实际研究对象,利用正交试验获得的数据,结合二标记物技术,用支持向量回归算法建立毛细管区带电泳的柱温、电压、缓冲液浓度和pH值与3种核苷的有效淌度之间的相关模型。将其与偏最小二乘回归和人工神经网络方法相比较,结果表明所建模型的预测准确性优于后两者,适宜用于毛细管电泳迁移行为的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号