首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The adsorption and reaction behaviors of HF on the α-Al(2)O(3)(0001) surface are systematically investigated using density functional theory method. By increasing the number of HF molecules in a p(2 × 1) α-Al(2)O(3)(0001) slab, we find that HF is chemically dissociated at low coverage; while both physical and dissociative adsorption occurs at a 3/2 monolayer (ML) coverage. At the same coverage (1.0 ML), diverse configurations of the dissociated HF are obtained in the p(2 × 1) model; while only one is observed in the p(1 × 1) slab due to its smaller surface area compared with the former one. Preliminary fluorination reaction study suggests that the total energy of two dissociated HF in the p(2 × 1) slab increases by 1.00 and 0.72 eV for the formation and desorption of water intermediate, respectively. The coadsorption behaviors of HF and H(2)O indicate that the pre-adsorbed water is unfavorable for the fluorination of Al(2)O(3), which is well consistent with the experimental results. The calculated density of states show that the peak of σ(H-F) disappears, while the peaks of σ(H-O) and σ(Al-F) are observed at -8.4 and -5 to -3 eV for the dissociated HF. Charge density difference analysis indicates that the dissociated F atom attracts electrons, while no obvious changes on electrons are observed for the surface Al atoms.  相似文献   

2.
To look for the single-source precursors, the structures and properties of (Br2AlN3) n (n = 1–4) clusters are studied at the B3LYP/6-311+G* level. The optimized (Br2AlN3) n (n = 2–4) clusters all possess cyclic structures containing Al-Nα-Al linkages. The relationships between the geometrical parameters and the oligomerization degree n are discussed. The gas-phase structures of the trimers prefer to exist in the boat-twisting conformation. As for the tetramer, the most stable isomers have the S 4 symmetry structure. The IR spectra are obtained and assigned by the vibrational analysis. The thermodynamic properties are linearly related with the oligomerization degree n as well as with the temperature. Meanwhile, the thermodynamic analysis of the gas-phase reaction suggests that the oligomerization be exothermic and favorable under high temperature.  相似文献   

3.
4.
Differential pair distribution function analysis was applied to resolve, with crystallographic detail, the structure of catalytic sites on the surface of nanoscale γ-Al(2)O(3). The structure was determined for a basic probe molecule, monomethylamine (MMA), bound at the minority Lewis acid sites. These active sites were found to be five-coordinate, forming distorted octahedra upon MMA binding. This approach could be applied to study the interaction of molecules at surfaces in dye-sensitized solar cells, nanoparticles, sensors, materials for waste remediation, and catalysts.  相似文献   

5.
The curve for the differential heat of adsorption of water on γ aluminum oxide has parts related to the interaction of the adsorbed water molecules with surface molecules of coordinated water and with acid and basic hydroxyl groups. Estimates have been made of the effective charges and hydration numbers for three of these adsorption centers. Textural changes have been observed in the γ-Al2O3 particles related to interplate swelling in the secondary sorbent packets into which the primary particles are linked. A. V. Dumanskii Institute for Colloid and Water Chemistry, National Academy of Sciences of Ukraine, 42 Prospekt Akademika Vernadskogo, Kiev-142 03680, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 36, No. 2, pp. 121–125, March–April, 2000.  相似文献   

6.
It is widely believed that small gold clusters supported on an oxide surface and adsorbed at the site of an oxygen vacancy are negatively charged. It has been suggested that this negative charge helps a gold cluster adsorb oxygen and weakens the O-O bond to make oxidation reactions more efficient. Given the fact that an oxygen vacancy is electron rich and that Au is a very electronegative element, the assumption that the Au cluster will take electron density from the vacancy is plausible. However, the density functional calculations presented here show that the situation is more complicated. The authors have used the Bader method to examine the charge redistribution when a Aun cluster (n=1-7) binds next to or at an oxygen vacancy on rutile TiO2(110). For the lowest energy isomers they find that Au1 and Au3 are negatively charged, Au5 and Au7 are positively charged, and Au2, Au4, and Au6 exchange practically no charge. The behavior of the Aun isomers having the second-lowest energy is also unexpected. Au2, Au3, Au5, and Au7 are negatively charged upon adsorption and very little charge is transferred when Au4 and Au6 are adsorbed. These observations can be explained in terms of the overlap between the frontier molecular orbitals of the gold cluster and the eigenstates of the support. Aun with even n becomes negatively charged when the lowest unoccupied molecular orbital has a lobe pointing in the direction of the oxygen vacancy or towards a fivefold coordinated Ti (5c-Ti) located in the surface layer; otherwise it stays neutral. Aun with odd n becomes negatively charged when the singly occupied molecular orbital has a lobe pointing in the direction of a 5c-Ti located at the vacancy site or in the surface layer, otherwise it donates electron density into the conduction band of rutile TiO2(110) becoming positively charged.  相似文献   

7.
Periodic DFT calculations coupled to a first-principle thermodynamic approach have allowed us to establish a surface phase diagram for the different terminations of the α-Al(2)O(3) (1102) surface in various temperature and water pressure conditions. Theoretical results are compared with previous experimental data from the literature. Under a wide range of temperature and water pressure (including ambient conditions) the most stable surface (denoted C2_1H(2)O in this work) is terminated with singly coordinated hydroxyls on four-fold coordinated aluminium (Al(4C)-μ(1)-OH) while most existing surface models are only considering six-fold coordinated surface Al atoms as in the bulk structure of alumina. The presence of more acidic Al(4C)-μ(1)-OH sites helps explain the low Point of Zero Charge (PZC) (between 5 and 6) determined from the onset of Mo oxoanions adsorption on (1102) single crystal wafers. It is also postulated that another termination (corresponding to the hydration of the non-polar, stoichiometric surface, stable in dehydrated conditions) may be observed in aqueous solution depending on the surface preparation conditions.  相似文献   

8.
 The possible geometrical structures and relative stability of (SiS2) n (n=1–6) silicon–sulfur clusters are explored by means of density functional theory quantum chemical calculations. The effects of polarization functions and electron correlation are included in these calculations. The electronic structures and vibrational spectra of the most stable geometrical structures of (SiS2) n are analyzed by the same method. As a result, the regularity of the (SiS2) n cluster growth is obtained, and the calculation may used for predicting the formation mechanism of the (SiS2) n cluster. Received: 17 November 1999 / Accepted: 3 November 2000 / Published online: 3 May 2001  相似文献   

9.
The structure of the most stable Me n clusters and Me n OH complexes (Me = Cu, Ag, Au; n = 2–8) was calculated using the density functional theory. The enthalpy and Gibbs energy of the interaction of OH· with metal clusters were calculated. It was shown that the hydroxyl radical is predominantly adsorbed into the bridge position on the metal IB clusters. During the adsorption of the hydroxyl radical, the frequency and intensity of the stretching vibrations of the O-H bond increased relative to the corresponding values for the isolated state; the frequency shift changed in the series Ag < Cu < Au.  相似文献   

10.
Possible geometrical structures and relative stabilities of (F2AlN3) n (n = 1–4) clusters were studied using density functional theory at the B3LYP/6-311+G* level. The optimized clusters (F2AlN3) n (n = 2–4) possess cyclic structure containing Al–Nα–Al linkages, and azido in azides has linear structure. The IR spectra of the optimized (F2AlN3) n (n = 1–4) clusters have three vibrational sections, the whole strongest vibrational peaks lie in 2218–2246 cm−1, and the vibrational modes are N3 asymmetric stretching vibrations. Trends in thermodynamic properties with temperature and oligomerization degree n are discussed, respectively. A study of their thermodynamic properties suggests that monomer 1A forms the most stable clusters (2A, 3A, and 4B) can occur spontaneously in the gas phase at temperatures up to 800 K.  相似文献   

11.
Through the first-principle density-functional theory (DFT) calculations, we have made an exhaustive study of the mechanism of CO oxidation catalyzed by AlCu n (n = 1–3) clusters on gas phase. It is shown that mixing two different metals (Al and Cu) can have beneficial effects on the catalytic activity than monometallic Cu n + 1 (n = 1–3) cluster toward the reaction of CO oxidation and the alloyed AlCu3 cluster is proposed as the best effective nanocatalysts.  相似文献   

12.
A detailed theoretical study of the potential energy surface of poorly understood ion-molecule reaction of NH(2)(-) and O(2) (a(1)Δ(g)) is explored at the density functional theory B3LYP/6-311++G(d,p), ab initio of QCISD/6-311++G(d,p) and CCSD(T)/6-311++G(3df, 2pd) (single-point) theoretical levels for the first time. It is shown that there are six total possible products from P(1) to P(6) on the singlet potential energy surface. Among these, the charge-transfer product P(1) (NH(2) + O(2)(-)) is the most favorable product with predominant abundances, whereas P(4) (NO(-) + H(2)O) and P(2) (HNO + OH(-)) may be the second and third feasible products followed by the almost neglectable P(3) (NO(2)(-) + H(2)), while P(5) (c-NO(2)(-) + H(2)) and P(6) (ONO(-) + H(2)) will not be observed due to their either high barriers or being secondary products. The present theoretical study points out that besides P(1) (NH(2) + O(2)(-)) and P(2) (HNO + OH(-)), P(4) (NO(-) + H(2)O) should be also observed, which is different from the previous experiment study by Anthony Midey et al. in 2008. In addition, almost all of the reaction pathways to products are exothermic and the reaction rate should be very fast since the reaction barriers are very low except for P(5) (c-NO(2)(-) + H(2)) which is in agreement with the measured total reaction rate constant k = 9.0 × 10(-10) cm(3)s(-1) at 300 K in the experiment study. It is expected that the present theoretical study may be helpful for the understanding of the reaction mechanism related to NHX(-), NX(2)(-), PHX(-), and PX(2)(-) (X = H, F, and Cl).  相似文献   

13.
Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.  相似文献   

14.
Density functional perturbation theory has been applied to study the surface vibrations of (2 × 2)-K monolayer on the Be(0001) surface. We present the full phonon dispersion curves along the high symmetry directions of the surface Brillouin zone (SBZ) together with the layer-projected phonon density of states and the phonon-induced surface charge density oscillations at Γ and M for the alkali SV and L modes. Surprisingly, at the M point, the L-phonon displacements produce a more pronounced perturbation on the surface charge density than the SV-phonon displacements. These results apparently solve the long-standing question regarding helium atom scattering (HAS) experiments performed on the similar system (2 × 2)-K on graphite, where the alkali SV phonon mode is not observed. Moreover, this result confirms the previous finding that HAS from free-electron metal surfaces probes directly the phonon-induced charge density oscillations and the related electron-phonon interaction.  相似文献   

15.
《Chemical physics letters》2003,367(1-2):245-251
The electronic structures and energies of (H2O)n·CCH and (H2O)n·HCC complexes (n=1–3) between CCH and water have been theoretically investigated at the UB3LYP/6-311++G(2df,p)//UB3LYP/6-311G(d,p) level. The complexes with n=2–3 are cyclic structures with homodromic hydrogen-bond chain. The (H2O)n·CCH (n=1–3) complexes show increasing stabilities towards CCH- or H2O-eliminations of 2.3, 5.8 and 7.6 kcal/mol and are energetically more stable than the corresponding (H2O)n·HCC complexes by 0.8, 2.7 and 3.4 kcal/mol, respectively, due to the charge-separation-enhanced hydrogen bonds within (H2O)n·CCH (n=2,3). Strong interactions between CCH and (H2O)2 and (H2O)3 clusters suggest special solvent effects of water on the chemical behavior of unsaturated radicals.  相似文献   

16.
The initial nucleation of gold clusters Aun (n = 1–5) on TiO2 rutile (110) reduced surface is studied using density functional theory and a full-potential augmented-plane-wave method implemented in the WIEN2k code. The first two gold atoms remained tied to the surface with a bond length similar to those belonging to other well-known related materials, while the other gold atoms do not spread over the surface; they preferred to form a new layer. The occurrence of relativistic effects produced a preferential triangle geometry for Au3 and a combination of triangular units for Au4 and Au5. The Au–Au average distance increased from n = 2 to n = 5, indicating an expansion with a tendency to the bond distance found in the bulk. We are reporting an early 2D→3D transition of small folding, from Au3→Au4, followed by an Au4→Au5 transition of evident 3D character.  相似文献   

17.
To look for the single-source precursors, density functional theory calculations were performed to study structures, IR spectra, and stabilities of the possible isomers for the clusters (I2GaN3) n (n = 1–4). It is found that the optimized (I2GaN3) n (n = 2–4) clusters all possess cyclic structure containing Ga-Nα-Ga linkages, and azido group in azides has linear structure. Trends in geometrical parameters with the oligomerization degree n are discussed. The IR spectra are obtained and assigned by vibrational analysis. Thermodynamic properties are linearly correlated with the oligomerization degree n as well as the temperature. Mean-while, the oligomerizations can occur spontaneously at 298.2 K.  相似文献   

18.
In this study, oxygen molecule adsorption on the surface of aluminum at various positions (top, bridge, and central sites) was studied, and the binding energies of oxygen species adsorbed on aluminum were calculated using density functional theory (DFT) within the generalized gradient approximation (GGA). The potential of the adsorption of oxygen on aluminum was examined as a function of both surface coverage and adsorption site. The relative stabilities of oxygen chemisorptions were independent of both the transition metal surface and surface coverage. That is, oxygen exhibited insignificant selectivity with respect to positions on the metal surface. Our data O2/Al surface chemisorptions revealed that the stables model for oxygen adsorption was that on the top site. The top site approach is important for the chemisorption processes because the adsorption energy for this model was lower than for the other sites. The paper presents the results of quantum chemical calculations using density functional theory method for adsorption of O2 molecules on Al (100) surface at cubic structure with LANL2DZ, SDD and 6-31G1 basis sets. We can extract energetic information about the stability of adsorption O2 on aluminum surface and calculation adsorption energy.  相似文献   

19.
The i.r. spectrum of α-cyanoacrylate adhesive molecule in the first monolayer on anodically oxidized aluminum has been obtained with a reflection method. A lowering of CO stretching frequency and a shift of antisymmetric stretching vibration of COC group to a higher frequency were observed in the molecule interacting with surface oxide of aluminum, suggesting hydrogen bond formation between the oxide and the adhesive molecule.  相似文献   

20.
Diphasic boehmite derived unseeded and seeded (by either -Al2O3, -Fe2O3, or Fe(NO3)3) alumina gel planar monoliths were examined by DTA, XRD and photoluminescence spectroscopy. Luminescence spectra enable sensitive monitoring of the - and -Al2O3 crystallization in heat-treated gels due to Cr3+ impurity traces. Fe(NO3)3 unlike other seeds effectively influences crystallization of both - and -Al2O3. The present results are interpreted as prevailing solution or Fe3+ ion effect on the crystallization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号