首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of neutral and cationic germylene-bridged complexes and a neutral germyl(germylene) complex have been synthesized and characterized by NMR spectroscopy and X-ray crystallography. Reaction of 1 equiv of primary germanes, RGeH(3) (R = Ph, (t)Bu), with [RhIr(CO)(3)(dppm)(2)] (1) at low-temperature yields [RhIr(GeH(2)R)(H)(CO)(3)(dppm)(2)] (R = Ph (3) or (t)Bu (4)), the products of single Ge-H bond activation, which upon warming transform to the germylene-bridged dihydrides, [RhIr(H)(2)(CO)(2)(μ-GeHR)(dppm)(2)] (R = Ph (5) or (t)Bu (6)) by activation of a second Ge-H bond accompanied by CO loss. Both classes of compounds have the diphosphines folded back in a "cradle-shaped" geometry. Although compound 5 reacts with additional phenylgermane at -40 °C to give a germylene-bridged/germyl product, [RhIr(GeH(2)Ph)(H)(2)(CO)(2)(κ(1)-dppm)(μ-GeHPh)(μ-H)(dppm)] (7), warming results in decomposition. However, reaction of 5 with 1 equiv of diphenylgermane at ambient temperature results in a novel mixed bis(μ-germylene) complex, [RhIr(CO)(2)(μ-GeHPh)(μ-GePh(2))(dppm)(2)] (8), containing both mono- and disubstituted germylene fragments. Reaction of 1 equiv of diphenylgermane with complex 1 produces a similar monogermylene-bridged product, [RhIr(H)(2)(CO)(2)(μ-GePh(2))(dppm)(2)] (9), while reaction of 1 with 2 equiv of diphenylgermane yields the germyl/germylene product [RhIr(H)(GeHPh(2))(CO)(3)(κ(1)-dppm)(μ-GePh(2))(dppm)] (10). The above reactions, incorporating first one and then a second equivalent of primary and secondary germanes, were studied by low-temperature multinuclear NMR spectroscopy, revealing details about the stepwise activations of multiple Ge-H bonds. Reaction of diphenylgermane with the cationic complex [RhIr(CH(3))(CO)(2)(dppm)(2)][CF(3)SO(3)] (2) leads to a cationic A-frame-type germylene- and hydride-bridged product, [RhIr(CO)(2)(μ-H)(μ-GePh(2))(dppm)(2)][CF(3)SO(3)] (3), which reversibly activates H(2), yielding a germyl-bridged dihydride and reacts stoichiometrically with water, methanol, and HCl to yield the respective germanol, germamethoxy, and germylchloride products.  相似文献   

2.
A series of mixed bis(μ-silylene) complexes of rhodium and iridium [RhIr(CO)(2)(μ-SiHR)(μ-SiR(1)R(2))(dppm)(2)] (R = R(1) = R(2) = Ph (4); R = R(1) = Ph, R(2) = Cl (5); R = R(1) = Ph, R(2) = Me (6); R = 3,5-C(6)H(3)F(2), R(1) = Ph, R(2) = Me (7); R = 3,5-C(6)H(3)F(2), R(1) = 2,4,6-C(6)H(2)Me(3), R(2) = H (8)) have been synthesized by the reaction of the silylene-bridged dihydride complexes, [RhIr(H)(2)(CO)(2)(μ-SiHR)(dppm)(2)] (1, R = Ph; 2, R = C(6)H(3)F(2)), with a number of secondary or primary silanes (Ph(2)SiH(2), PhClSiH(2), PhMeSiH(2), C(6)H(2)Me(3)SiH(3)). The influence of substituents and π-stacking interactions on the Si···Si distance (determined by X-ray crystallography) in this series and the implications regarding the nature of the Si···Si interactions are discussed. A series of novel (μ-silylene)/(μ-germylene) complexes, [RhIr(CO)(2)(μ-SiHPh)(μ-GePh(2))(dppm)(2)] (9) and [RhIr(CO)(2)(μ-SiR(1)R(2))(μ-GeHPh)(dppm)(2)] (R(1) = Ph, R(2) = H (11); R(1) = R(2) = Ph (12); R(1) = Ph, R(2) = Me (13)), have also been synthesized by reaction of the silylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-SiHPh)(dppm)(2)] (1), with 1 equiv of diphenylgermane and by reaction of the germylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-GeHPh)(dppm)(2)] (3), with 1 equiv of the respective silanes. These complexes have been characterized by multinuclear NMR spectroscopy and X-ray crystallography.  相似文献   

3.
The reaction of [RhOs(CO)(3)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] (dppm = μ-Ph(2)PCH(2)PPh(2)) with 1,3,4,5-tetramethylimidazol-2-ylidene (IMe(4)) results in competing substitution of the Rh-bound carbonyl by IMe(4) and dppm deprotonation by IMe(4) to give the two products [RhOs(IMe(4))(CO)(2)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] and [RhOs(CO)(3)(μ-CH(2))(μ-κ(1):η(2)-dppm-H)(dppm)] [3; dppm-H = bis(diphenylphosphino)methanide], respectively. In the latter product, the dppm-H group is P-bound to Os while bound to Rh by the other PPh(2) group and the adjacent methanide C. The reaction of the tetracarbonyl species [RhOs(CO)(4)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] with IMe(4) results in the exclusive deprotonation of a dppm ligand to give [RhOs(CO)(4)(μ-CH(2))(μ-κ(1):κ(1)-dppm-H)(dppm)] (4) in which dppm-H is P-bound to both metals. Both deprotonated products are cleanly prepared by the reaction of their respective precursors with potassium bis(trimethylsilyl)amide. Reversible conversion of the μ-κ(1):η(2)-dppm-H complex to the μ-κ(1):κ(1)-dppm-H complex is achieved by the addition or removal of CO, respectively. In the absence of CO, compound 3 slowly converts in solution to [RhOs(CO)(3)(μ-κ(1):κ(1):κ(1)-Ph(2)PCHPPh(2)CH(2))(dppm)] (5) as a result of dissociation of the Rh-bound PPh(2) moiety of the dppm-H group and its attack at the bridging CH(2) group. Compound 4 is also unstable, yielding the ketenyl- and ketenylidene/hydride tautomers [RhOs(CO)(3)(μ-κ(1):η(2)-CHCO)(dppm)(2)] (6a) and [RhOs(H)(CO)(3)(μ-κ(1):κ(1)-CCO)(dppm)(2)] (6b), initiated by proton transfer from μ-CH(2) to dppm-H. Slow conversion of these tautomers to a pair of isomers of [RhOs(H)(CO)(3)(μ-κ(1):κ(1):κ(1)-Ph(2)PCH(COCH)PPh(2))(dppm)] (7a and 7b) subsequently occurs in which proton transfer from a dppm group to the ketenylidene fragment gives rise to coupling of the resulting dppm-H methanide C and the ketenyl unit. Attempts to couple the ketenyl- or ketenylidene-bridged fragments in 6a/6b with dimethyl acetylenedicarboxylate (DMAD) yield [RhOs(κ(1)-CHCO)(CO)(3)(μ-DMAD)(dppm)(2)], in which the ketenyl group is terminally bound to Os.  相似文献   

4.
The mixed-metal complex, [RhOs(CO)(4)(dppm)(2)][BF(4)] (1; dppm = micro-Ph(2)PCH(2)PPh(2)) reacts with diazomethane to yield a number of products resulting from methylene incorporation into the bimetallic core. At -80 degrees C the reaction between 1 and CH(2)N(2) yields the methylene-bridged [RhOs(CO)(3)(micro-CH(2))(micro-CO)(dppm)(2)][BF(4)] (2), which reacts further at ambient temperature to give the allyl methyl species, [RhOs(eta(1)-C(3)H(5))(CH(3))(CO)(3)(dppm)(2)][BF(4)] (4). At intermediate temperatures compounds 1 and 2 react with diazomethane to yield the butanediyl complex [RhOs(C(4)H(8))(CO)(3)(dppm)(2)][BF(4)] (3) by the incorporation and coupling of four methylene units. Compound 2 is proposed to be an intermediate in the formation of 3 and 4 from 1 and on the basis of labeling studies a mechanism has been proposed in which sequential insertions of diazomethane-generated methylene fragments into the Rh-C bond of bridging hydrocarbyl fragments occur. Reaction of the tricarbonyl species, [RhOs(CO)(3)(micro-CH(2))(dppm)(2)][BF(4)] with diazomethane over a range of temperatures generates the ethylene complex [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7a), but no further incorporation of methylene groups is observed. This observation suggests that carbonyl loss in the formation of the above allyl and butanediyl species only occurs after incorporation of the third methylene fragment. Attempts to generate C(2)-bridged species by the reaction of 1 with ethylene gave no reaction, however, in the presence of trimethylamine oxide the ethylene adducts [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7b; an isomer of 7a) and [RhOs(eta(2)-C(2)H(4))(2)(CO)(2)(dppm)(2)][BF(4)] (8) were obtained. The relationship of the above products to the selective coupling of methylene groups, and the roles of the different metals are discussed.  相似文献   

5.
We report the selective activation of carbon-fluorine bonds in trifluoroethylene using the diiridium complex [Ir(2)(CH(3))(CO)(2)(dppm)(2)][OTf] (1). Coordination of trifluoroethylene in a bridging position between the two metals in 1 results in facile fluoride ion loss in three different ways. Attack by strong fluorophiles such as Me(3)SiOTf and HOTf results in F(-) removal from one of the geminal fluorines to give the cis-difluorovinyl-bridged product [Ir(2)(CH(3))(OTf)(CO)(2)(μ-κ(1):η(2)-C(F)═CFH)(dppm)(2)][OTf]. A second activation can also be accomplished by addition of excess Me(3)SiOTf to give the fluorovinylidene-bridged product [Ir(2)(CH(3))(OTf)(CO)(2)(μ-C(2)FH)(dppm)(2)][OTf](2). Interestingly, activation of the trifluoroethylene-bridged precursor by water also occurs, yielding [Ir(2)(CH(3))(CO)(2)(κ(1)-C(H)═CF(2))(μ-OH)(dppm)(2)][OTf], in which the lone vicinal fluorine is removed, leaving a geminal arrangement of fluorines in the product. A [1,2]-fluoride shift can also be induced in the trifluoroethylene-bridged precursor upon the addition of CO to give the 2,2,2-trifluoroethylidene-bridged product [Ir(2)(CH(3))(CO)(3)(μ-C(H)CF(3))(dppm)(2)][CF(3)SO(3)]. Addition of hydrogen to the cis-difluorovinyl-bridged product results in the quantitative elimination of cis-difluoroethylene, while its reaction with CO yields a mixture of cis-difluoropropene and 2,3-difluoropropene by reductive elimination of the methyl and difluorovinyl groups with an accompanying isomerization in the case of the second product. Finally, protonation of the 2,2,2-trifluoroethylidene-bridged product liberates 1,1,1-trifluoroethane, in which one hydrogen (H(+)) is from the acid while the other hydrogen (H(-)) is derived from activation of the methyl group.  相似文献   

6.
The bridging fluoroolefin ligands in the complexes [Ir(2)(CH(3))(CO)(2)(μ-olefin)(dppm)(2)][OTf] (olefin = tetrafluoroethylene, 1,1-difluoroethylene; dppm = μ-Ph(2)PCH(2)PPh(2); OTf(-) = CF(3)SO(3)(-)) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me(3)SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me(3)SiOTf to the tetrafluoroethylene-bridged species gives the difluorovinylidene-bridged product [Ir(2)(CH(3))(OTf)(CO)(2)(μ-OTf)(μ-C=CF(2))(dppm)(2)][OTf]. The 1,1-difluoroethylene species is exceedingly reactive, reacting with water to give 2-fluoropropene and [Ir(2)(CO)(2)(μ-OH)(dppm)(2)][OTf] and with carbon monoxide to give [Ir(2)(CO)(3)(μ-κ(1):η(2)-C≡CCH(3))(dppm)(2)][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir(2)(κ(1)-C(2)F(3))(OTf)(CO)(2)(μ-H)(μ-CH(2))(dppm)(2)][OTf], obtained through single C-F bond activation of the tetrafluoroethylene-bridged complex, reacts with H(2) to form trifluoroethylene, allowing the facile replacement of one fluorine in C(2)F(4) with hydrogen.  相似文献   

7.
The purpose of this work was to characterise supercritical hydrofluorocarbons (HFC) that can be used as solvents for electrodeposition. The phase behaviour of CHF(3), CH(2)F(2), and CH(2)FCF(3) containing [NBu(n)(4)][BF(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] was studied and the conditions for forming a single supercritical phase established. Although all three HFCs are good solvents for [NBu(n)(4)][BF(4)] the results show that the CH(2)F(2) system has the lowest p(r) for dissolving a given amount of [NBu(n)(4)][BF(4)]. The solubility of Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] in CH(2)F(2) was found to be unexpectedly high. Studies of the phase behaviour of CH(2)F(2) containing [NBu(n)(4)][BF(4)] and [Cu(CH(3)CN)(4)][BF(4)] showed that the copper complex was unstable in the absence of CH(3)CN. For CHF(3), [Cu(hfac)(2)] was more soluble and more stable than [Cu(CH(3)CN)(4)][BF(4)] and only increased the phase-separation pressure by a moderate amount. Studies of the conductivity of [NBu(n)(4)][B(C(6)F(5))(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)], [NR(f)Bu(n)(3)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] (R(f) = (CH(2))(3)C(7)F(15)), and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] were carried out in scCH(2)F(2). The results show that these salts are more conducting than [NBu(n)(4)][BF(4)] under the same conditions although the increase is much less significant than that reported in previous work in supercritical CO(2) + CH(3)CN. Consequently, either [NBu(n)(4)][BF(4)] or the corresponding BARF salts would be suitable background electrolytes for electrodeposition from scCH(2)F(2).  相似文献   

8.
Acid hydrolysis of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) or protonation of the anionic PO cluster [Ru(5)(CO)(15)(mu(4)-PO)](-) (3) affords the hydroxyphosphinidene complex [Ru(5)(CO)(15)(mu(4)-POH)].1.[H(2)N(i)()Pr(2)][CF(3)SO(3)], which cocrystallizes with a hydrogen-bonded ammonium triflate salt. Reaction of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) with bis(diphenylphosphino)methane (dppm) leads to [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PN(i)Pr(2))] (4). Acid hydrolysis of 4 leads to the dppm-substituted hydroxyphosphinidene [Ru(5)(CO)(13)(mu-dppm)(mu(4)-POH)] (5), which is analogous to 1, but unlike 1, can be readily isolated as the free hydroxyphosphinidene acid. Compound 5 can also be formed by reaction of 3 with dppm and acid. The cationic hydride cluster [Ru(5)(CO)(13)(mu-dppm)(mu(3)-H)(mu(4)-POH)][CF(3)SO(3)] (6) can be isolated from the same reaction if chromatography is not used. Compound 4 also reacts with HBF(4) to form the fluorophosphinidene cluster [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PF)] (7), while reaction with HCl leads to the mu-chloro, mu(5)-phosphide cluster [Ru(5)(CO)(13)(mu-dppm)(mu-Cl)(mu(5)-P)] (8).  相似文献   

9.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

10.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

11.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

12.
Reaction of 1,1-difluoroallene and tetrafluoroallene with a series of transition metal complex fragments yields the mononuclear allene complexes [CpMn(CO)(2)(allene)] (1), [(CO)(4)Fe(allene)] (2), [(Ph(3)P)(2)Pt(C(3)H(2)F(2))] (4), [Ir(PPh(3))(2)(C(3)H(2)F(2))(2)Cl] (5), and the dinuclear complexes [mu-eta(1)-eta(3)-C(3)H(2)F(2))Fe(2)(CO)(7)] (3), [Ir(PPh(3))(C(3)H(2)F(2))(2)Cl](2) (6), and [mu-eta(2)-eta(2)-C(3)H(2)F(2))(CpMo(CO)(2))(2)] (9), respectively. In attempts to synthesize cationic complexes of fluorinated allenes [CpFe(CO)(2)(C(CF(3))=CH(2))] (7a), [CpFe(CO)(2)(C(CF(3))=CF(2))] (7b) and [mu-I-(CpFe(CO)(2))(2)][B(C(6)H(3)-3,5-(CF(3))(2))(4)] were isolated. The spectroscopic and structural data of these complexes revealed that the 1,1-difluoroallene ligand is coordinated exclusively with the double bond containing the hydrogen-substituted carbon atom. 1,1-Difluoroallene and tetrafluoroallene proved to be powerful pi acceptor ligands.  相似文献   

13.
A number of local and integral topological parameters of the electron density of relevant bonding interactions in the binuclear molybdenum complexes [Mo(2)Cl(8)](4-), [Mo(2)(μ-CH(3)CO(2))(4)], [Mo(2)(μ-CF(3)CO(2))(4)], [Mo(2)(μ-CH(3)CO(2))(4)Br(2)](2-), [Mo(2)(μ-CF(3)CO(2))(4)Br(2)](2-), [Mo(2)(μ-CH(3)CO(2))(2)Cl(4)](2-), [Mo(2)(μ-CH(3)CO(2))(2)(μ-Cl)(2)Cl(4)](2-), and [Mo(2)(μ-Cl)(3)Cl(6)](3-) have been calculated and interpreted under the perspective of the quantum theory of atoms in molecules (QTAIM). These data have allowed a comparison between related but different atom-atom interactions, such as different Mo-Mo formal bond orders, ligand-unbridged versus Cl-bridged, CH(3)CO(2)-bridged, and CF(3)CO(2)-bridged Mo-Mo interactions, and Mo-Cl(terminal) and Mo-Cl(bridge) versus Mo-Br and Mo-O interactions. Calculations carried out using nonrelativistic and relativistic approaches afforded similar results.  相似文献   

14.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

15.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

16.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

17.
The compound 2,11-dithia[3.3]orthocyclophane (L) is a mesocyclic dithioether that can act as a bidentate ligand in different conformations. In the ionic heteroleptic complexes [PtL(eta(4)-cod)][CF(3)SO(3)](2) (1), [RhL(eta(4)-cod)][CF(3)SO(3)] (2), and [IrL(eta(4)-cod)][CF(3)SO(3)] (3) (cod = 1,5-cyclooctadiene), L is coordinated in the anti I conformation both in solution and in the solid state, as revealed by an X-ray diffraction study of complex 1. However, in complexes [PdL(PPh(3))(2)][SO(3)CF(3)](2) (4) and [PtL(PPh(3))(2)][SO(3)CF(3)](2) (5), L exhibits two different conformations: anti I and anti II in a 40:60 ratio, as observed by (1)H and (31)P NMR spectroscopy, with no exchange up to 90 degrees C. The homoleptic complexes [PdL(2)][SO(3)CF(3)](2) (6) and [PtL(2)][SO(3)CF(3)](2) (7), with two ligands bound to the metal, display two isomers in solution, one of them with L in conformations anti I-anti II and the other with conformations anti II-anti II with a 75:25 ratio. The X-ray structure of 6 showed only the presence of the anti II-anti II isomer in the solid state. All complexes were synthesized by the reaction of a suitable chloride complex with 2 equiv of silver triflate and 1 equiv of L.  相似文献   

18.
The complex [PtMe(2)(dppa)], 1a, dppa = Ph(2)PNHPPh(2), which has previously been prepared as a mixture with the dimeric form [Pt(2)Me(4)(micro-dppa)(2)], was synthesized in pure form by the reaction of [PtCl(2)(dppa)] with MeLi. The aryl analogue [Pt(p-MeC(6)H(4))(2)(dppa)], 1b, was prepared by replacement of SMe(2) in cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with dppa. The reaction of the chelate complexes 1 with one equiv. of dppa afforded the complexes [PtR(2)(dppa-P)(2)], R=Me, 2a and R=p-MeC(6)H(4) 2b. The reaction of [PtR(2)(dppa)], 1, with neat MeI gave the organoplatinum(iv) complexes [PtR(2)MeI(dppa)], R=Me, 5a and R=p-MeC(6)H(4), 5b. The structure of 5a, determined by X-ray crystallography, indicated that the complex undergoes self-assembly by intermolecular N-H . . . I-Pt hydrogen bonding. MeI was also double oxidatively added to organodiplatinum(ii) complex cis,cis-[Me(2)Pt(micro-SMe(2))(micro-dppa)PtMe(2)], to give diorganoplatinum(iv) complex [Me(3)Pt(micro-dppa)(micro-I)(2)PtMe(3)], 4. The aryl analogue organodiplatinum(ii) complex cis,cis-[(p-MeC(6)H(4))(2)Pt(micro-SMe(2))(micro-dppa)Pt(p-MeC(6)H(4))(2)], 3b, was prepared by the reaction of cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with half equiv. of dppa, but 3b refused to react with MeI, probably because of the steric effects of the aryl ligands. The tetramethyl complex [PtMe(4)(dppa)], 6, was prepared either by reaction of 5a with MeLi or by replacement of SMe(2) in [Pt(2)Me(8)(micro-SMe(2))(2)] with dppa. All the complexes were fully characterized in solution by multinuclear NMR ((1)H, (13)C, (31)P and (195)Pt) methods and their coordination compared with that of the corresponding known dppm complexes.  相似文献   

19.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

20.
Mao LF  Mayr A 《Inorganic chemistry》1996,35(11):3183-3187
The complexes trans-[MI(2)(CNC(6)H(4)-CN-4)(2)], (M = Pd and Pt), trans-[FeI(2)L(4)] (L = CNC(6)H(4)-CN-4 and CNC(6)H(2)-Me(2)-2,6-CN-4), and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] were prepared. The compounds are thermally stable up to 230 degrees C or higher. The molecular structure of trans-[FeI(2)(CNC(6)H(4)-CN-4)(4)] was determined by X-ray crystallography: monoclinic, space group P2(1)/n, a = 11.570(2) ?, b = 10.1052(8) ?, c = 28.138(7) ?, beta = 92.034(9) degrees, Z = 4, 3464 unique reflections, R = 0.074, R(w) = 0.089. The complexes contain the peripheral cyano groups in linear, planar, and octahedral dispositions, respectively. Solids were obtained by combining solutions of [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)], [FeI(2)(CNC(6)H(4)-CN-4)(4)] and AgSO(3)CF(3), [FeI(2)(CNC(6)H(2)-Me(2)-2,6-CN-4)(4)] and [Rh(2)(O(2)CCF(3))(4)], and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] and [Rh(2)(O(2)CCF(3))(4)]. [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)] in a ratio of 1:2 form a crystalline, one-dimensional solid: monoclinic, space group P2(1)/c, a = 8.317(2) ?, b = 13.541(1) ?, c = 22.568(5) ?, beta = 100.45(1) degrees, Z = 2, 3279 unique reflections, R = 0.037, R(w) = 0.047.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号