首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of Cd(II) coordination complexes with an elongated 2,4-dipyridyl-type building block trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (bpe) and different dicarboxylate ligands have been presented. Generally, bpe shows the unidentate coordination mode and serves as the terminal pendant, whereas the dicarboxylate ligands display various binding fashions to interlink the metal centers to form 1-D comb-like chain, ribbon, and fishbone arrays, as well as 2-D 44 and 4.82 layered networks. Notably, the bpe building block is also involved in secondary interactions such as hydrogen bonding and aromatic stacking to construct the resulting supramolecular architectures. Thermal stability of these complexes has been studied by TG-DTA technique.  相似文献   

2.
Hardie MJ  Sumby CJ 《Inorganic chemistry》2004,43(22):6872-6874
A new 3-fold symmetric molecular host, tris(isonicotinoyl)cyclotriguaiacylene, has been synthesized from cyclotriguaiacylene and isonicotinoyl chloride hydrochloride in 70% yield. Its crystal structure shows dimerization of the host molecules into a capsule-like arrangement. When reacted with Ag[Co(C(2)B(9)H(11))(2)], the host forms a 1-D [ML(2)](n) coordination polymer, which assembles into a 2-D interwoven network through a similar dimerization of the host moieties around acetonitrile guests. Thus, the network structure represents an elegant example whereby the solid state structure of the building blocks is echoed in the resulting supramolecular assembly. The 2-D sheets are further stabilized by pi...pi stacking interactions between pyridyl donors of alternate 1-D coordination polymers.  相似文献   

3.
The isothiocyanato Zn(II) complex (1) and mixed isothiocyanato/thiocyanato Cd(II) complex (2) with the condensation product of 2-acetylpyridine and trimethylammoniumacetohydrazide chloride (Girard’s T reagent) (HLCl) were investigated both experimentally and theoretically. The crystal structures of both complexes showed tridentate N2O coordination of hydrazine ligand. In complex 1 square-pyramidal coordination surrounding of Zn(II) consists of deprotonated hydrazone ligand and two isothiocyanato ligands, while in octahedral Cd(II) complex ligand is coordinated without deprotonation as a positively charged species and coordination geometry is completed with two N-coordinated and one S-coordinated NCS? anions. NMR spectroscopy and molar conductivity results for Cd(II) and Zn(II) complexes indicated their instability in solution. DFT calculations were performed to explain coordination preference and stability of complexes 1 and 2 in solid state and in solution. The obtained Cd(II) complex is the first reported mononuclear pseudohalide/halide Cd(II) complex with quinoline-/pyridine-based hydrazone ligands possessing octahedral geometry in solid state. In this complex, H-bonding has significant impact on coordination number and supramolecular assembly in solid state.  相似文献   

4.
A range of N‐donor ligands based on the 1H‐pyridin‐(2E)‐ylidene (PYE) motif have been prepared, including achiral and chiral examples. The ligands incorporate one to three PYE groups that coordinate to a metal through the exocyclic nitrogen atom of each PYE moiety, and the resulting metal complexes have been characterised by methods including single‐crystal X‐ray diffraction and NMR spectroscopy to examine metal–ligand bonding and ligand dynamics. Upon coordination of a PYE ligand to a proton or metal‐complex fragment, the solid‐state structures, NMR spectroscopy and DFT studies indicate that charge redistribution occurs within the PYE heterocyclic ring to give a contribution from a pyridinium–amido‐type resonance structure. Additional IR spectroscopy and computational studies suggest that PYE ligands are strong donor ligands. NMR spectroscopy shows that for metal complexes there is restricted motion about the exocyclic C? N bond, which projects the heterocyclic N‐substituent in the vicinity of the metal atom causing restricted motion in chelating‐ligand derivatives. Solid‐state structures and DFT calculations also show significant steric congestion and secondary metal–ligand interactions between the metal and ligand C? H bonds.  相似文献   

5.
The tris(para-pyridyl)phosphine template (1) has been used in conjunction with a series of meso-substituted Zn(II)-tetraphenylporphyrins complexes (2-10) to create supramolecular encapsulated ligand assemblies via Zn-N(pyr) interactions. The structural features of supramolecular ligand 1.[2](3) have been investigated in detail using X-ray crystallography, NMR specroscopy, and UV-vis spectroscopy. The pyridylphosphine-porphyrin stoichiometry determined in solution (1:3) differs markedly with that observed in the solid state (2:5, for assembly [1](2).[2](5)). The difference originates from an unusual coordination behavior of one of the Zn centers, which is octahedrally surrounded through double axial coordination by the pyridyl groups of the two different molecules of 1.  相似文献   

6.
Three new coordination networks based on a versatile and unsymmetric building block 3-(sulfonyl-glycine)benzoic acid (HAL) ligand and inorganic Co(Ⅱ) salt, [Co(HL)(bipy)2]. ClO4·1.5H2O (1), [Co3(L)2(H2O)6]·4H2O (2) and [Co(HL)(bpp)(H2O)2]·2H2O (3) (bipy = 2,2-bipyridine, bpp = 1,3-bi(4-pyridyl)propane), have been synthesized in aqueous media and structurally characterized by single-crystal X-ray diffraction. Reaction of Co salt with H3L afforded a neutral 1D alternating chain, which shows a 3-D supramolecular network through hydrogen bonds. When the auxiliary 2,2-bipyridine is used, a mononuclear unit is constructed; if using auxiliary ligand bpp, a neutral 1-D uniform chain is obtained and further extended into a 3-D supramolecular structure through versatile hydrogen bonds. The H3L ligand in 1 adopts a bidentate chelating coordination mode while that in 2 and 3 assumes a pentadentate bridging and a bis-monodentate bridging modes, respectively. This work and our previous work evidently demonstrate that the structures vary with altering the second ligands.  相似文献   

7.
Six novel inorganic-organic coordination supramolecular networks based on a versatile linking unit 4-pyridylthioacetate (pyta) and inorganic Co(II), Cu(II), Ag(I), Zn(II), Mn(II) and Pb(II) salts have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of CoCl(2).6H(2)O with Hpyta afforded a neutral mononuclear complex [Co(pyta)(2)(H(2)O)(4)](1), which exhibits a two-dimensional (2-D) layered architecture through intermolecular O-HO interactions. Reaction of CuCl(2.2H(2)O with Hpyta yielded a neutral one-dimensional (1-D) coordination polymer [[Cu(pyta)(2)(H(2)O].0.5H(2)O](n)(2) consisting of rectangle molecular square units, which show a three-dimensional (3-D) supramolecular network through S...S and O-H...O weak interactions. However, when AgNO(3), Zn(OAc)(2).2H(2)O or MnCl(2).4H(2)O salts were used in the above self-assembled processes, the neutral 2-D coordination polymers [Ag(pyta)](n)(3), [[Zn(pyta)(2)].4H(2)O](n)(4) or [[Mn(pyta)(2)(H(2)O)]](n)(5) with different topologies were obtained, respectively. While substituting the transition metal ions used in 1-5 with Pb(OAc)(2).3H(2)O, a one-dimensional coordination polymer [Pb(pyta)(2)](n)(6), which shows a novel 2-fold interpenetrating 2-D supramolecular architecture through weak SS interactions, was isolated. It is interesting to note that the building block pyta anion exhibits different configurations and coordination modes in the solid structures of complexes 1-6. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal centers, play a critical role in construction of these novel coordination polymers or supramolecules. The spectral and thermal properties of these new materials have also been investigated.  相似文献   

8.
The isolation and structural characterisation of three isomeric silver(I) complexes, 1a, 1b and 2 with the general formula {[AgL(1)]ClO(4)}(n) (where L(1) is a bis(bidentate) N,N-donor ligand derived from the Schiff-base condensation of α,α'-diamino-p-xylene and pyridine-2-carboxaldehyde) are discussed. Single-crystal X-ray structures reveal the polymeric nature for the complexes where all the silver ions are in pseudotetrahedral geometry with the AgN(4) coordination environment. Isomers 1a (Pc space group) and 1b (Cc space group) were crystallised from acetonitrile whereas 2 (C2/c space group) was crystallised during the synthesis from a solvent mixture of dicholormethane and methanol. The flexible ligand (L(1)) adopts only an anti conformation in 1b and the presence of two different anti conformations in the repeating unit results in the formation of a trapezoidal wave polymeric chain. However, both gauche and anti conformations of the ligand are found to be present in the polymeric chains of 1a. In the polymeric chain of 2, only one anti isomer of the ligand is present in the repeating unit resulting in a triangular wave chain. The structure of isomer 1a is solvent induced and solvent plays a major role in the crystal packing of this isomer. One-dimensional coordination polymers 1a, 1b and 2 are related to each other as conformational supramolecular isomers. Additionally, two independent polymeric chains parallel to each other: one triangular wave consisting of only an anti conformation and a trapezoidal wave chain consisting of alternate gauche and anti conformations of the ligand are observed in 1a. This is a rare example of two supramolecular isomers present in the same crystal. Six different conformers of the flexible ligand are observed in the crystals of coordination polymers.  相似文献   

9.
Neutral trinuclear metal complexes L2Cd3 x 2H2O, L2Mn3 x MeOH, and L2Zn3 x MeOH were isolated in the reaction between the phosphorus-centered achiral tris(hydrazone) P(S)[N(Me)N=CHC6H(4)-o-OH]3 (LH3) and the corresponding divalent metal ions. The trinuclear complexes contain two equivalent terminal metal ions (M(t)) and a central metal ion (M(c)). The ligand encapsulates M(t) in a facial N3O3 coordination environment. From the coordination sphere of the two terminal metal ions a pair of phenolic oxygen atoms further coordinate to the central metal ion. The coordination requirements of M(c) are completed by the solvents of coordination. The achiral trianionic tripodal ligand (L)3- induces chirality in the metal complexes. This results in a delta (clockwise) or lambda (anticlockwise) configuration for the terminal metal ions. The enantiomeric complexes 2-4 (delta-delta or lambda-lambda) crystallize as racemic compounds. The supramolecular structures of 2-4 reveal chiral recognition in the solid-state; every molecule with the delta-delta configuration interacts stereospecifically, through C-H...S=P bonds, with two lambda-lambda molecules to generate a one-dimensional polymeric chain. Photophysical studies of the diamagnetic trinuclear complexes reveal that the tricadmium complex is luminescent in the solid state as well as in solution. In contrast LH3 and L2Zn3 x MeOH are nonluminescent.  相似文献   

10.
Three cadmium coordination polymers derived from the dianions of (4-carboxymethoxy-naphthalen-1-yloxy) acetic acid (LH2) and (4-carboxymethoxy-2,3-bis-arylsulfanyl naphthalene-1-yloxy) acetic acid (L1H2), in which the dianions of the corresponding acids act as a spacer to cadmium nodes, have been prepared and characterized. The coordination polymer of the dianion of (4-carboxy-methoxy-2,3-bis-arylsulfanylnaphthalene-1-yloxy) acetic acid with cadmium is a 3-D coordination polymer, whereas the dimensionality of the coordination polymer of the dianion of (4-carboxymethoxy-naphthalen-1-yloxy) acetic acid is dependent on the ancillary ligand. The presence of the chelating ligand 1,10-phenanthroline gave a 1-D polymer of the dicarboxylate anion L, but in the absence of a chelating ligand a 2-D coordination polymer encapsulating hexa–aquacadmium(II) ions was obtained. The latter two coordination polymers show fluorescence emission in the solid state.  相似文献   

11.
三种新型铜配合物的合成、结构及理论计算   总被引:1,自引:0,他引:1  
合成了一个柔性配体1,3-二(N-咪唑基甲基)苯(mbix)(1), 并将其与不同Cu盐组装, 得到3个新配合物[Cu(mbix)2(H2O)]·2NO3·CH3OH(2), [Cu(mbix)(N3)(OAc)]·CH3OH(3)和[Cu(mbix)2]·SiF6·2CH3OH(4), 并对其进行了元素分析、红外光谱及X 射线单晶结构分析表征. 配合物2拥有二维二重贯穿结构, 配合物3中两个铜离子通过两个叠氮酸根桥连成双核铜, 它再通过配体连接形成一维绞链状结构, 而配合物4通过配体桥联成一维无限链状结构. 结果显示, 平衡阴离子在配合物的组装过程中起着非常重要的作用. 此外还对配体及3个配合物中配体的构象进行了理论计算.  相似文献   

12.
Aluminum(III) porphyrin carboxylate complexes have shown an affinity for a sixth nitrogenous ligand. The use of isonicotinic or nicotinic acid, which offers both a carboxylate and a nitrogen donor in the same molecule, resulted in the formation of one-dimensional (1-D) coordination polymers. The complexes and their linear oligomers have been characterized by (1)H NMR spectroscopy and nanoelectrospray ionization spectrometry. X-ray analyses confirmed the formation of the 1-D polymers in the solid state.  相似文献   

13.
The systematic assembly of supramolecular arrangements is a persistent challenge in modern coordination chemistry, especially where further aspects of complexity are concerned, as in the case of large molecular mixed-metal arrangements. One targeted approach to such heterometallic complexes is to engineer metal-based donor ligands of the correct geometry to build 3D arrangements upon coordination to other metals. This simple idea has, however, only rarely been applied to main group metal-based ligand systems. Here, we show that the new, bench-stable tris(3-pyridyl)stannane ligand PhSn(3-Py)3 (3-Py=3-pyridyl) provides simple access to a range of heterometallic SnIV/transition metal complexes, and that the presence of weakly coordinating counter anions can be used to build discrete molecular arrangements involving anion encapsulation. This work therefore provides a building strategy in this area, which parallels that of supramolecular transition metal chemistry.  相似文献   

14.
The simple tripodal amine ligand Tris-[2-(naphthalen-1-yloxy)-ethyl]-amine (L1) was screened for anion recognition. Four crystal structures confirmed the inorganic as well as organic anion recognition in the solid state. Solid-state structures are results of supramolecular self-assembly and 3D molecular network involves C–HO and C–Hπ bonding in the crystal lattice. In the solid state, it forms a strong C–HCl and C–HO type interactions with the anions. This anion recognition was also confirmed by steady state fluorescence spectroscopy. In complex 4, L1 is confined between 2D hydrogen bonded sheet formed by pyromellitic acid anion. L1 shows unusually high selectivity toward nitrate in solution resulting in both a dramatic color change and a concomitant quenching of luminescence.  相似文献   

15.
Self-assembly processes between a tripodal ligand and Ln(III) cations have been investigated by means of supramolecular analytical methods. At an equimolar ratio of components, tetranuclear tetrahedral complexes are readily formed in acetonitrile. The structural analysis of the crystallographic data shows a helical wrapping of binding strands around metallic cations. The properties of this series of highly charged 3D compounds were examined by using NMR spectroscopy and optical methods in solution and in the solid state. In the presence of excess metal, a new trinuclear complex was identified. The X-ray crystal structure elucidated the coordination of metallic cations with two ligands of different conformations. By varying the metal/ligand ratio, a global speciation of this supramolecular system has been evidenced with different spectroscopic methods. In addition, these rather complicated equilibria were successfully characterised with the thermodynamic stability constants. A rational analysis of the self-assembly processes was attempted by using the thermodynamic free energy model and the impact of the ligand structure on the effective concentration is discussed.  相似文献   

16.
The directed assembly of six different M(II) complexes (M = Cu, Co, and Ni) into infinite chains has been achieved by combining anionic chelating ligands (for controlling the coordination geometry) with bifunctional ligands containing a metal-coordinating pyridyl moiety and a self-complementary hydrogen-bonding moiety. Six crystal structures are presented, and in each case, the chelating acac ligand occupies the four equatorial coordination sites leaving room for the bifunctional ligand to coordinate in the axial positions. The supramolecular chemistry, which organizes the coordination complexes into the desired infinite 1-D chains, is driven by a combination of N-H...N and N-H...O hydrogen bonds.  相似文献   

17.
The coordination of the N,N ligands 2,2-bipyridine (bipy) and 1,10-phenanthroline (phen) to Ga(III) has been investigated via the formation of new ionic hexacoordinated complexes of general formula [Q'(2)Ga(N,N)][X], where HQ' stands for 2-methyl-8-hydroxyquinoline and the counter anion X(-) is nitrate (NO(3)(-)) or hexafluorophosphate (PF(6)(-)). All synthesized complexes were characterized by single-crystal X-ray diffraction analysis. The geometry of the Ga(III) cations is octahedral and a single geometric isomer (all N, N trans conformation) has been obtained in all cases. The role of both the N,N ligand and the counter anion has been investigated in the formation of the crystal supramolecular motifs occurring in the 3D-crystal networks of these new class of ionic Ga(III) derivatives. A full investigation of the photophysical properties of the new synthesized ionic species is reported and discussed in relation to their crystalline packing and the degree of crystallinity of thin solid films as well as the nature of the N,N ligand and the counter anion.  相似文献   

18.
Using N-P-acetamidobenzenesulfonyl-glycine acid (abbreviated as abglyH2) as a ligand, two zinc(II) complexes [Zn(abglyH)2(bipy)2(H2O)2], (1) and {[Znz(abgly)2(bipy)2(H2O)2]. 2(H2O)}n (2) (bipy = 4,4'-bipyridine) have been synthesized under mild conditions and characterized by IR, elemental analysis and X-ray diffraction analysis. Complex 1 is a monomeric compound, which is further assembled by intermolecular hydrogen bonds and π-π interactions into a 3-D supramolecular network. Complex 2 adopts a one-dimensional double chain structure and is further linked by hydrogen bonds to form a 2-D structure. Fluorescent analysis shows that complex 1 has an emissive maximum at 337 nm and complex 2 exhibits an emissive maximum at 339 nm in the solution state at room temperature.  相似文献   

19.
Using the principle of crystal engineering, three new silver metal–organic coordination polymers, [Ag2(L1)2(L2)]·2H2O (1), [Ag2(L1)2(L3)]·H2O (2), [Ag2(L1)2(L4)]·2H2O (3) (L1 = 2-aminopyrimidine, L2 = oxalate anion, L3 = glutarate anion and L4 = 1,4-naphthalenedicarboxylate anion) have been synthesized by solution phase reactions of silver nitrate with various dicarboxylic acids and cooperative heterocyclic 2-aminopyrimidine ligand under the ammoniacal conditions. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. In complex 1, L1 ligands are coordinated to Ag(I) metal centers in rare tridentate fashions, forming one-dimensional (1-D) ladder-like structure, which is interlinked by L2 anions to generate 2-D pleated molecular sheet. Complex 2 displays an interesting two-dimensional (2-D) tongue-and-groove structure containing a new kind of “T-shaped” unit. Meanwhile, each of 2-D bilayers is interlocked by four adjacent identical motifs to form three-dimensional (3-D) 5-fold interpenetrating conformation with weak Ag···Ag interactions. In complex 3, L1 ligands are coordinated to the Ag(I) ions to form 1-D polymeric chain. And L4 anions, acting as bridging linkers through corresponding μ2-carboxylates, link a pair of Ag(I) atoms from adjacent chains to yield 3-D supramolecular network. The structures of complexes 13 which span from 2-D to 3-D networks suggest that dicarboxylate anions play important role in the formation of such coordination architectures.  相似文献   

20.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号