首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Asparagine‐linked (N‐linked) sugar chains are widely found in the rough endoplasmic reticulum (ER), which has attracted renewed attention because of its participation in the glycoprotein quality control process. In the ER, newly formed glycoproteins are properly folded to higher‐order structures by the action of a variety of lectin chaperones and processing enzymes and are transported into the Golgi, while terminally misfolded glycoproteins are carried into the cytosol for degradation. A group of proteins related to this system are known to recognize subtle differences in the high‐mannose‐type oligosaccharide structures of glycoproteins; however, their molecular foundations are still unclear. In order to gain a more precise understanding, our group has established a strategy for the systematic synthesis of high‐mannose‐type glycans. More recently, we have developed “top‐down” chemoenzymatic approaches that allow expeditious access to theoretically all types of high‐mannose glycans. This strategy comprehensively delivered 37 high‐mannose‐type glycans, including G1M9–M3 glycans, and opened up the possibility of the elucidation of structure–function relationships with a series of high‐mannose‐type glycans.  相似文献   

2.
A divergent chemoenzymaytic approach for the preparation of core‐fucosylated and core‐unmodified asymmetrical N‐glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N‐glycans. Antennae‐selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N‐glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core‐fucoside without affecting the fucoside of a sialyl LewisX epitope to give easy access to core‐unmodified compounds.  相似文献   

3.
The N‐glycans attached to some chloroviruses comprise a hyperbranched core structure without precedent. We are interested in the chemical synthesis of the hexasaccharide attached to ATCV‐1 (Acanthocystis turfacea Chlorella virus 1) for its distinct structure. After exploring four routes, the target hexasaccharide 2 was successfully synthesized for the first time in overall 10% yield over 8 steps from thioglycoside building blocks. This synthetic protocol is characterized by the three‐component one‐pot glycosylation and the regioselective glycosylation reactions. The disclosed synthetic approach to this new type of N‐glycans will facilitate the in‐depth understanding of their biological functions.  相似文献   

4.
The isomeric structure of high‐mannose N‐glycans can significantly impact biological recognition events. Here, the utility of travelling‐wave ion mobility mass spectrometry for isomer separation of high‐mannose N‐glycans is investigated. Negative ion fragmentation using collision‐induced dissociation gave more informative spectra than positive ion spectra with mass‐different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling‐wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N‐glycans released from the well‐characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross‐sectional data, details of the negative ion collision‐induced dissociation spectra of all resolved isomers are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The majority of lysosomal enzymes are targeted to the lysosome by post‐translational tagging with N‐glycans terminating in mannose‐6‐phosphate (M6P) residues. Some current enzyme replacement therapies (ERTs) for lysosomal storage disorders are limited in their efficacy by the extent to which the recombinant enzymes bear the M6P‐terminated glycans required for effective trafficking. Chemical synthesis was combined with endo‐β‐N‐acetylglucosaminidase (ENGase) catalysis to allow the convergent synthesis of glycosyl amino acids bearing M6P residues. This approach can be extended to the remodeling of proteins, as exemplified by RNase. The powerful synergy of chemical synthesis and ENGase‐mediated biocatalysis enabled the first synthesis of a glycoprotein bearing M6P‐terminated N‐glycans in which the glycans are attached to the peptide backbone by entirely natural linkages.  相似文献   

7.
Congenital disorders of glycosylation (CDG) are due to defective glycosylation of glycoconjugates. Conserved oligomeric Golgi (COG)‐CDG are genetic diseases due to defects of the COG complex subunits 1–8 causing N‐glycan and O‐glycan processing abnormalities. In COG‐CDG, isoelectric focusing separation of undersialylated glycoforms of serum transferrin and apolipoprotein C‐III (apoC‐III) allows to detect N‐glycosylation and O‐glycosylation defects, respectively. COG5‐CDG (COG5 subunit deficiency) is a multisystem disease with dysmorphic features, intellectual disability of variable degree, seizures, acquired microcephaly, sensory defects and autistic behavior. We applied matrix‐assisted laser desorption/ionization‐MS for a high‐throughput screening of differential serum O‐glycoform and N‐ glycoform in five patients with COG5‐CDG. When compared with age‐matched controls, COG5‐CDG showed a significant increase of apoC‐III0a (aglycosylated glycoform), whereas apoC‐III1 (mono‐sialylated glycoform) decreased significantly. Serum N‐glycome of COG5‐CDG patients was characterized by the relative abundance of undersialylated and undergalactosylated biantennary and triantennary glycans as well as slight increase of high‐mannose structures and hybrid glycans. Using advanced and well‐established MS‐based approaches, the present findings reveal novel aspects on O‐glycan and N‐glycan profiling in COG5‐CDG patients, thus providing an increase of current knowledge on glycosylation defects caused by impairment of COG subunits, in support of clinical diagnosis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Formalin‐fixed, paraffin‐embedded (FFPE) samples are generally used for histology‐study, however, they also possess important molecular diagnostics information. While it has been reported that the N‐glycan moieties of glycoproteins is not affected by the FFPE process, no information is available about the effect of the elapsed time between sampling and fixation on the resulting N‐glycosylation profile. In this study, lung, brain, heart, spleen, liver, kidney, and intestine mouse tissue specimens were used for N‐glycan profiling analysis and the elapsed sampling time effect was investigated with the lung tissue. N‐glycan extraction from the tissue samples was performed by glycoprotein retrieval from the FFPE specimens using radioimmunoprecipitation assay (RIPA) buffer followed PNGase F digestion. The released oligosaccharides were fluorophore labeled and analyzed by capillary electrophoresis‐laser induced fluorescent detection (CE‐LIF). N‐glycosylation profiles of freshly collected lung‐tissue samples (zero time point), as well as 1 and 2 h after sampling were compared by carbohydrate profiling and exoglycosidase treatment based deep glycomic analysis. It was found that up to two hours of room temperature storage of tissue specimens apparently did not cause changes in the N‐glycosylation profiles of complex carbohydrates, but resulted in considerable decrease in the amount of linear glucose oligomers and high mannose type glycans present in the samples.  相似文献   

9.
In this work, Ni@Pt core‐shell nanoparticles with diameter of 3–4 nm and thin Pt shell was synthesized by a successive reduction approach using carbon as support to develop high‐performance non‐enzymatic glucose sensor. The resulting electrochemical sensor displayed good catalytic activity toward glucose oxidation, presenting a high current density of 66.9 µA mM?1 cm?2 at an applied potential of ?0.1 V. It showed a wide linear range of 0.1–30.1 mM and the limit of detection was down to 30 µM (S/N=3). Notably, it was found that the proposed sensor exhibited good selectivity to avoid the interference from ascorbic acid, uric acid, fructose and acetamidophenol. Furthermore, the feasibility of the as‐prepared non‐enzymatic glucose sensor in the determination of glucose in serum samples was successfully implemented.  相似文献   

10.
O‐Mannose glycans account up to 30 % of total O‐glycans in the brain. Previous synthesis and functional studies have only focused on the core M3 O‐mannose glycans of α‐dystroglycan, which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 core M1 and core M2 O‐mannose glycans. This chemoenzymatic strategy features the gram‐scale chemical synthesis of five judiciously designed core structures, and the diversity‐oriented modification of the core structures with three enzyme modules to provide 58 complex O‐mannose glycans in a linear sequence that does not exceed four steps. The binding profiles of synthetic O‐mannose glycans with a panel of lectins, antibodies, and brain proteins were also explored by using a printed O‐mannose glycan array.  相似文献   

11.
N‐glycan structures released from miniature pig endothelial and islet cells were determined by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF), negative ion electrospray ionization (ESI) MS/MS and normal‐phase high performance liquid chromatography (NP‐HPLC) combined with exoglycosidase digestion. Totally, the identified structures were 181 N‐glycans including 129 sialylated and 18 α‐galactosylated glycans from pig endothelial cells and 80 N‐glycans including 41 sialylated and one α‐galactosylated glycans from pig islet cells. The quantity of the α‐galactosylated glycans from pig islet cells was certainly neglectable compared to pig endothelial cells. A number of NeuGc‐terminated N‐glycans (80 from pig endothelial cells and 13 from pig islet cells) are newly detected by our mass spectrometric strategies. The detailed structural information will be a matter of great interest in organ or cell xenotransplantation using α 1,3‐galactosyltransferase gene‐knockout (GalT‐KO) pig. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Negative ion CID spectra of N‐linked glycans released from glycoproteins contain many ions that are diagnostic for specific structural features such as the detailed arrangement of antennae and the location of fucose residues. Identification of such ions requires reference glycans that are often difficult to acquire in a pure state. The recent acquisition of a sample of N‐glycans from a patient lacking the enzyme N‐acetylglucosaminyltransferase‐2 provided an opportunity to investigate fragmentation of glycans lacking a 6‐antenna. These glycans contained one or two galactose‐N‐acetylglucosamine‐chains attached to the 3‐linked mannose residue of the trimannosyl‐chitobiose core with and without fucose substitution. The spectra from the patient sample clearly defined the antenna distribution and showed striking differences from the spectra of isomeric compounds obtained from normal subjects. Furthermore, they provided additional information on previously identified antenna‐specific fragment ions and indicated the presence of additional ions that were diagnostic of fucose substitution. Glycans obtained from such enzyme‐deficient patients can, thus, be a valuable way of obtaining spectra of specific isomers in a relatively pure state for interpretation of mass spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The HIV envelope glycoprotein gp120 takes advantage of the high‐mannose clusters on its surface to target the C‐type lectin dendritic cell‐specific intracellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) on dendritic cells. Mimicking the cluster presentation of oligomannosides on the virus surface is a strategy for designing carbohydrate‐based antiviral agents. Bio‐inspired by the cluster presentation of gp120, we have designed and prepared a small library of multivalent water‐soluble gold glyconanoparticles (manno‐GNPs) presenting truncated (oligo)mannosides of the high‐mannose undecasaccharide Man9GlcNAc2 and have tested them as inhibitors of DC‐SIGN binding to gp120. These glyconanoparticles are ligands for DC‐SIGN, which also interacts in the early steps of infection with a large number of pathogens through specific recognition of associated glycans. (Oligo)mannosides endowed with different spacers ending in thiol groups, which enable attachment of the glycoconjugates to the gold surface, have been prepared. manno‐GNPs with different spacers and variable density of mannose (oligo)saccharides have been obtained and characterized. Surface plasmon resonance (SPR) experiments with selected manno‐GNPs have been performed to study their inhibition potency towards DC‐SIGN binding to gp120. The tested manno‐GNPs completely inhibit the binding from the micro‐ to the nanomolar range, while the corresponding monovalent mannosides require millimolar concentrations. manno‐GNPs containing the disaccharide Manα1‐2Manα are the best inhibitors, showing more than 20 000‐fold increased activity (100 % inhibition at 115 nM ) compared to the corresponding monomeric disaccharide (100 % inhibition at 2.2 mM ). Furthermore, increasing the density of dimannoside on the gold platform from 50 to 100 % does not improve the level of inhibition.  相似文献   

15.
A modular set of oligosaccharide building blocks was developed for the synthesis of multiantennary N‐glycans of the complex type, which are commonly found on glycoproteins. The donor building blocks were laid out for the elongation of a core trisaccharide acceptor (β‐mannosyl chitobiose) conveniently protected with a single benzylidene moiety at the β‐mannoside. Through two consecutive regio‐ and stereoselective couplings the donors gave N‐glycans with three to five antennae in high yields. Due to the consistent protection group pattern of the donors the deprotection of the final products can be performed by using a general reaction sequence.  相似文献   

16.
Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de‐N‐acetylation, chemical N‐sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non‐radioactive NMR assay for glucuronosyl‐C5‐epimerase, and background‐free quantification of in vivo half‐life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope‐enriched glycosaminoglycans.  相似文献   

17.
The synthesis, recrystallization, and X‐ray deterimination of N,N,N‐trimethyl‐5‐[(2,3,5,6‐tetrafluorophenoxy)carbonyl]pyridin‐2‐aminium trifluoromethanesulfonate (PyTFP‐precursor), C15H13F4N2O2+·CF3SO3, is described. This triflate salt precursor is required for the synthesis of 2,3,5,6‐tetrafluorophenyl 6‐[18F]‐fluoronicotinate ([18F]FPyTFP), a prosthetic group used to radiolabel peptides for positron emission tomography (PET), as peptides are increasingly being used as PET‐imaging probes in nuclear medicine. Radiolabeling of peptides is typically done using a `prosthetic group', a small synthon to which the radioisotope is attached in the first step, followed by attachment to the peptide in the second step. During the synthesis of the PyTFP‐precursor, displacement of a Cl atom with trimethylamine gas and anion replacement with a triflate counter‐ion is critical, as incomplete replacement would hinder radioisotopic incorporation of nucleophilic fluorine‐18 and result in diminished radiochemical yields. The structural determination of the PyTFP‐precursor by X‐ray crystallography helped confirm the anion exchange of chloride with triflate.  相似文献   

18.
We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium‐mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N‐(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell‐surface glycans. This conversion chemically mimics the enzymatic de‐N‐acetylation of N‐acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell‐surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell‐surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.  相似文献   

19.
On solid ground : A new solid‐phase synthesis of N‐linked glycans featuring 1) highly stereoselective β‐mannosylation and microfluidic α‐sialylation and 2) efficient glycosylation of the N‐phenyltrifluoroacetimidate units on JandaJel resin is reported. Reagent concentration effects by a fluorous solvent are effectively applied, and the use of these methods results in the first synthesis of a sialic acid containing complex‐type N‐glycan on a solid support.

  相似文献   


20.
电喷雾质谱被应用于分辨2-氨基-1,3-恶嗪及六氢化-4-苯基-吡喃[2,3-d]嘧啶-2-酮的杂环结构。两类化合物均为三组份反应的产物,且其杂环的结构很难用NMR判断。实验首次系统研究了两类化合物的质谱学行为(包括氘代实验和高分辨质谱研究),发现前者在CID实验中丢失CH2N2和HCNO,而后者为直接丢失尿素。这些特征丢失为该类衍生物的结构判断,尤其是高通量的合成产物分析提供了重要的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号