首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By application of substoichiometric amounts (50 mol %) of a chiral Lewis acid, the intramolecular [2+2] photocycloaddition of the title compounds was achieved with high enantioselectivity (up to 94 % ee). Upon cleavage of the cyclobutane ring the resulting tricyclic products underwent ring‐expansion reactions under acidic conditions and formed anellated seven‐ or eight‐membered‐ring systems without racemization. The ring expansion could be combined with a diastereoselective reduction (triethylsilane) or allylation (allyltrimethylsilane) upon BF3 catalysis (48–87 % yield).  相似文献   

2.
We report herein a powerful and highly stereoselective protocol for the domino‐type reaction of diazoesters with ortho‐quinone methides generated in situ to furnish densely functionalized chromans with three contiguous stereogenic centers. A transition‐metal and a Brønsted acid catalyst were shown to act synergistically to produce a transient oxonium ylide and ortho‐quinone methide, respectively, in two distinct cycles. These intermediates underwent subsequent coupling in a conjugate‐addition–hemiacetalization event in generally good yield with excellent diastereo‐ and enantioselectivity.  相似文献   

3.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

4.
β‐Substituted chiral γ‐aminobutyric acids feature important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein, an efficient catalytic enantioselective approach for the synthesis of β‐substituted γ‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asymmetric radical conjugate additions is reported. Various β‐substituted γ‐aminobutyric acid analogues, including previously inaccessible derivatives containing fluorinated quaternary stereocenters, were obtained in good yields (42–89 %) and with excellent enantioselectivity (90–97 % ee). Synthetically valuable applications were demonstrated by providing straightforward synthetic access to the pharmaceuticals or related bioactive compounds (S)‐pregabalin, (R)‐baclofen, (R)‐rolipram, and (S)‐nebracetam.  相似文献   

5.
A new kind of podand‐based dimeric salen ligand was synthesized, and its association with potassium cations was investigated by 1H NMR spectroscopy. The corresponding CrIII–salen dimer was assembled by a supramolecular host–guest self‐assembly process and was then used as a catalyst in highly efficient and enantioselective asymmetric Henry reactions. Regulation by KBArF (BArF=[3,5‐(CF3)2C6H3]4B) led to remarkable improvements in yield (by up to 58 %) and enantioselectivity (for example, from 80 % ee to 96 % ee).  相似文献   

6.
A highly efficient asymmetric ring‐opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N′‐dioxide–scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99 % yield and 95 % ee. This is also the first example of one catalytic system working for the ring‐opening reaction of donor–acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.  相似文献   

7.
Chirally functionalized hollow nanospheres with different surface properties were successfully synthesized by co‐condensation of (2S,1′R,2′R)‐Ntert‐butyloxycarbonylpyrrolidine‐2‐carboxylic acid [2′‐(4‐trimethoxysilylbenzylamide)cyclohexyl] amide with 1,2‐bis(trimethoxysilyl)ethane or tetramethoxysilane using F127 (EO106PO70EO106) as surfactant in water. The TEM and N2 sorption characterizations show that the particle size of the hollow nanosphere is 15–21 nm with a core diameter of 10–16 nm. These L ‐prolinamide‐functionalized hollow nanospheres are highly efficient solid catalysts for the direct asymmetric aldol reaction between cyclohexanone and aromatic aldehydes. It was found that the addition of water in the reaction system not only enhanced the catalytic activity but also increased the enantioselectivity, which is probably due to the enhanced hydrogen bond between the amide oxygen atom and the hydroxyl group of water. Moreover, the catalytic activity increases sharply as the surface hydrophobicity of the hollow nanospheres increases. These hollow nanospheres are quite stable and can be reused with almost the same enantioselectivity and only a slight decrease in catalytic activity.  相似文献   

8.
The development of the first trans‐selective catalytic asymmetric [2+2] cyclocondensation of acyl halides with aliphatic aldehydes furnishing 3,4‐disubstituted β‐lactones is described. This work made use of a new strategy within the context of asymmetric dual activation catalysis: it combines the concepts of Lewis acid and organic aprotic ion pair catalysis in a single catalyst system. The methodology could also be applied to aromatic aldehydes and offers broad applicability (29 examples). The utility was further demonstrated by nucleophilic ring‐opening reactions that provide highly enantiomerically enriched anti‐aldol products.  相似文献   

9.
Anion‐π interactions have been recently introduced to catalysis with the idea to stabilize anionic intermediates on π‐acidic surfaces. Realized examples include enolate, enamine and iminium chemistry, domino processes and Diels–Alder reactions. Moving on from the formation of contiguous stereogenic centers on π‐acidic surfaces, herein we report the first asymmetric anion‐π catalysis of cascade reactions that afford nonadjacent stereocenters. Conjugate addition‐protonation of achiral disubstituted enolate donors to 2‐chloroacrylonitrile generates 1,3‐nonadjacent stereocenters with moderate enantioselectivity and diastereoselectivity. The explored catalysts operate with complementary naphthalenediimide and fullerene surfaces with highly positive quadrupole moments and high polarizability, respectively, and proximal amine bases. We find that anion‐π catalysts can increase the diastereoselectivity of the reaction beyond the maximal 1:4.0 dr with conventional catalysts to maximal 5.3:1 dr on the large fullerene surfaces. The enantioselectivity of anion‐π catalysts, best on the confined naphthalenediimide surfaces with strong quadrupole moment, exceed the performance of conventional catalysts except for comparable results with a new, most compact, surprisingly powerful bifunctional control catalyst. Simultaneously increased rates and stereoselectivities compared to control catalysts without π‐acidic surface support that contributions of anion‐π interactions to the catalytic cascade process are significant.  相似文献   

10.
Combining single electron transfer between a donor substrate and a catalyst‐activated acceptor substrate with a stereocontrolled radical–radical recombination enables the visible‐light‐driven catalytic enantio‐ and diastereoselective synthesis of 1,2‐amino alcohols from trifluoromethyl ketones and tertiary amines. With a chiral iridium complex acting as both a Lewis acid and a photoredox catalyst, enantioselectivities of up to 99 % ee were achieved. A quantum yield of <1 supports the proposed catalytic cycle in which at least one photon is needed for each asymmetric C? C bond formation mediated by single electron transfer.  相似文献   

11.
Introduction of an L ‐amino acid as a spacer and a urea‐forming moiety in a polymer‐supported bifunctional urea–primary amine catalyst, based on (1R, 2R)‐(+)‐1,2‐diphenylethylenediamine, significantly improves the catalyst’s activity and stereoselectivity in the asymmetric addition of ketones and aldehydes to nitroolefins. Yields and enantioselectivities, unprecedented for immobilized catalysts, were obtained with such challenging donors as acetone, cyclopentanone, and α,α‐disubstituted aldehydes, which usually perform inadequately in this reaction (particularly when a secondary‐amine‐based catalyst is used). Remarkably, though in the examined catalysts the D ‐amino acids as spacers were significantly inferior to the L isomers, for the chosen configuration of the diamine (match–mismatch pairs) the size of the side chain of the amino acid hardly influenced the enantioselectivity of the catalyst. These results, combined with the reactivity profile of the catalysts with substrates bearing two electron‐withdrawing groups and the behavior of the catalysts’ analogues based on tertiary (rather than primary) amine, suggest an enamine‐involving addition mechanism and a particular ordered C? C bond‐forming transition state as being responsible for the catalytic reactions with high enantioselectivity.  相似文献   

12.
A highly efficient asymmetric cascade reaction between keto esters and alkynyl alcohols and amides is reported. The success of the reaction was attributed to the combination of chiral Lewis acid N,N′‐dioxide nickel(II) catalysis with achiral π‐acid gold(I) catalysis working as an asymmetric relay catalytic system. The corresponding spiroketals and spiroaminals were synthesized in up to 99 % yield, 19:1 d.r., and more than 99 % ee under mild reaction conditions. Control experiments suggest that the N,N′‐dioxide ligand was essential for the formation of the spiro products.  相似文献   

13.
An asymmetric aza‐Diels–Alder reaction of 3‐vinylindoles with isatin‐derived ketimines has been developed. A series of spiroindolone derivatives were thus obtained in good to excellent yields with excellent enantioselectivity (up to 96 % yield and 99 % ee). Furthermore, the antimalarial compound NITD609 could be obtained in three steps with an overall yield of 40.6 %. Control experiments and operando IR experiments imply a concerted reaction pathway. The regioselectivity and exo selectivity result from π–π interactions between the two indoline rings of the two reactants.  相似文献   

14.
Reported is the first enantioselective oxidative Pummerer‐type transformation using phase‐transfer catalysis to deliver enantioenriched sulfur‐bearing heterocycles. This reaction includes the direct oxidation of sulfides to a thionium intermediate, followed by an asymmetric intramolecular nucleophilic addition to form chiral cyclic N,S‐acetals with moderate to high enantioselectivites. Deuterium‐labelling experiments were performed to identify the stereodiscrimination step of this process. Further analysis of the reaction transition states, by means of multidimensional correlations and DFT calculations, highlight the existence of a set of weak noncovalent interactions between the catalyst and substrate that govern the enantioselectivity of the reaction.  相似文献   

15.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

16.
Supramolecular containers featuring both high catalytic activity and high enantioselectivity represent a design challenge of practical importance. Herein, it is demonstrated that a chiral octahedral coordination cage can be constructed by using twelve enantiopure Mn(salen)‐derived dicarboxylic acids as linear linkers and six Zn4p‐tert‐butylsulfonylcalix[4]arene clusters as tetravalent four‐connected vertices. The porous cage features a large hydrophobic cavity (≈3944 Å3) decorated with catalytically active metallosalen species and is shown to be an efficient and recyclable asymmetric catalyst for the oxidative kinetic resolution of racemic secondary alcohols and the epoxidation of olefins with up to >99 % enantiomeric excess. The cage architecture not only prevents intermolecular deactivation and stabilizes the Mn(salen) catalysts but also encapsulates substrates and concentrates reactants in the cavity, resulting in enhanced reactivity and enantioselectivity relative to the free metallosalen catalyst.  相似文献   

17.
A bis‐cyclometalated chiral‐at‐metal rhodium complex catalyzes the Diels–Alder reaction between N‐Boc‐protected 3‐vinylindoles (Boc=tert‐butyloxycarbonyl) and β‐carboxylic ester‐substituted α,β‐unsaturated 2‐acyl imidazoles with good‐to‐excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92–99 % ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2‐acyl imidazole dienophile by two‐point binding and overrules the preferred regioselectivity of the uncatalyzed reaction.  相似文献   

18.
The nucleophilic iron complex Bu4N[Fe(CO)3(NO)] (TBA[Fe]) is an active catalyst in C?H‐amination but also in proton‐transfer catalysis. Herein, we describe the successful use of this complex as a proton‐transfer catalyst in the cyclocondensation reaction between azides and ketones to the corresponding 1,2,3‐triazoles. Cross‐experiments indicate that the proton‐transfer catalysis is significantly faster than the nitrene‐transfer catalysis, which would lead to the C?H amination product. An example of a successful sequential Dimroth triazole–indoline synthesis to the corresponding triazole‐substituted indolines is presented.  相似文献   

19.
A highly efficient and practical method for the catalytic enantioselective arylation and heteroarylation of aldehydes with organotitanium reagents, prepared in situ by the reaction of aryl‐ and heteroaryllithium reagents with ClTi(OiPr)3, is described. Titanium complexes derived from DPP‐H8‐BINOL ( 3 d ; DPP=3,5‐diphenylphenyl) and DTBP‐H8‐BINOL ( 3 e ; DTBP=3,5‐di‐tert‐butylphenyl) exhibit excellent catalytic activity in terms of enantioselectivity and turnover efficiency for the transformation, providing diaryl‐, aryl heteroaryl‐, and diheteroarylmethanol derivatives in high enantioselectivity at low catalyst loading (0.2–2 mol %). The reaction begins with a variety of aryl and heteroaryl bromides through their conversion into organolithium intermediates by Br/Li exchange with nBuLi, thus providing straightforward access to a range of enantioenriched alcohols from commercially available starting materials. Various 2‐thienylmethanols can be synthesized enantioselectively by using commercially available 2‐thienyllithium in THF. The reaction can be carried out on a 10 mmol scale at 0.5 mol % catalyst loading, demonstrating its preparative utility.  相似文献   

20.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号