首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cu salts have been found to promote the cycloaddition reaction of sydnones and terminal alkynes, providing significant reduction in reaction times. Specifically, the use of Cu(OTf)2 is found to provide 1,3‐disubstituted pyrazoles, whereas simply switching the promoter system to Cu(OAc)2 allows the corresponding 1,4‐isomers to be produced. The mechanism of the Cu‐effect in each case has been investigated by experimental and theoretical studies, and they suggest that Cu(OTf)2 functions by Lewis acid activation of the sydnone, whereas Cu(OAc)2 promotes formation of reactive CuI acetylides.  相似文献   

2.
A Rh‐catalyzed intramolecular [3+2+2] cycloaddition is reported. The cycloaddition affords synthetically relevant 5,7,5‐fused tricyclic systems of type 2 from readily available dienyne precursors. The transformation takes place with moderate or good yields, high diastereoselectivity, and total chemoselectivity.  相似文献   

3.
4.
Half-sandwich RhI compounds display good catalytic activity toward alkyne [2+2+2] cycloadditions. A peculiar structural feature of these catalysts is the coordination of the metal to an aromatic moiety, typically a cyclopentadienyl anion, and, in particular, the possibility to change the bonding mode easily by the metal slipping over this aromatic moiety. Upon modifying the ancillary ligands, or proceeding along the catalytic cycle, hapticity changes can be observed; it varies from η5, if the five metal–carbon distances are identical, through η32, in the presence of allylic distortion, and η3, in the case of allylic coordination, to η1, if a σ metal–carbon bond forms. In this study, we present the slippage span model, derived with the aim of establishing a relationship between slippage variation during the catalytic cycle, quantified in a novel and rigorous way, and the performance of catalysts in terms of turnover frequency, computed with the energy span model. By collecting and comparing new data and data from the literature, we find that the highest performance is associated with the smallest slippage variation along the cycle.  相似文献   

5.
6.
7.
A two‐step reaction to convert terminal alkynes into triborylalkenes is reported. In the first step, the terminal alkyne and pinacolborane (HBpin) are converted into an alkynylboronate, which is catalyzed by an iridium complex supported by a SiNN pincer ligand. In the second step, treatment of the reaction mixture with CO generates a new catalyst which mediates dehydrogenative diboration of alkynylboronate with pinacolborane. The mechanism of the diboration remains unclear but it does not proceed via intermediacy of hydroboration products or via B2pin2.  相似文献   

8.
The mechanism of the Rh‐catalysed [2+2+2] cycloaddition reaction of diynes with monoynes has been examined using ESI‐MS and ESI‐CID‐MS analysis. The catalytic system used consisted of the combination of a cationic rhodium(I) complex with bisphosphine ligands, which generates highly active complexes that can be detected by ESI(+) experiments. ESI‐MS on‐line monitoring has allowed the detection for the first time of all of the intermediates in the catalytic cycle, supporting the mechanistic proposal based mainly on theoretical calculations. For all ESI‐MS experiments, the structural assignments of ions are supported by tandem mass spectrometry analyses. Computer model studies based on density functional theory (DFT) support the structural proposal made for the monoyne insertion intermediate. The collective studies provide new insight into the reactivity of cationic rhodacyclopentadienes, which should facilitate the design of related rhodium‐catalysed C? C couplings.  相似文献   

9.
Reported herein is the novel gold‐catalyzed intermolecular [2+2+2] cycloaddition of ynamides with two discrete nitriles to form monomeric 4‐aminopyrimidines, which are pharmaceutically important structural motifs. The utility of this new cycloaddition is demonstrated by the excellent regioselectivity obtained using a variety of ynamides and nitriles.  相似文献   

10.
11.
The thermal [4+3] cycloaddition reaction between allenes and tethered dienes (1,3‐butadiene and furan) assisted by transition metals (AuI, AuIII, PdII, and PtII) was studied computationally within the density functional theory framework and compared to the analogous non‐organometallic process in terms of activation barriers, synchronicity and aromaticity of the corresponding transition states. It was found that the metal‐mediated cycloaddition reaction is concerted and takes place via transition structures that can be even more synchronous and more aromatic than their non‐organometallic analogues. However, the processes exhibit slightly to moderately higher activation barriers than the parent cycloaddition involving the hydroxyallylic cation. The bond polarization induced by the metal moiety is clearly related to the interaction of the transition metal with the allylic π* molecular orbital, which constitutes the LUMO of the initial reactant. Finally, replacement of the 1,3‐butadiene by furan caused the transformation to occur stepwise in both the non‐organometallic and metal‐assisted processes.  相似文献   

12.
Synthetic sequel : The transition‐metal‐catalyzed [2+2+2] cycloaddition is an established method for the construction of carbocyclic frameworks but is often plagued by poor selectivity. Recent literature paints a promising picture—a more general metal‐catalyzed [2+2+2] cycloaddition can be accomplished intermolecularly using three separate alkynes to furnish highly substituted arenas (see scheme).

  相似文献   


13.
A family of iridium(I) hydroxides of the form [Ir(cod)(NHC)(OH)] (cod=1,5‐cyclooctadiene, NHC=N‐heterocyclic carbene) is reported. Single‐crystal X‐ray analyses and computational methods were used to explore the structural characteristics and steric properties of these new complexes. The model complex [Ir(cod)(IiPr)(OH)] (IiPr=1,3‐(diisopropyl)imidazol‐2‐ylidene) undergoes reaction with a wide variety of substrates including boronic acids and silicon compounds. In addition, O? H, N? H and C? H bond activation was achieved with alcohols, carboxylic acids, amines and various sp‐, sp2‐ and sp3‐hybridised carbon centres, giving access to a wide range of new IrI complexes. These studies have allowed us to explore the exciting reactivity of this motif, revealing a versatile and useful synthon capable of activating important chemical bonds under mild (typically room temperature) conditions. No additives were required and, in the case of X? H bond activation, water was the only waste product, rendering this an atom efficient procedure for bond activation. This system has great potential for the construction of new catalytic cycles for organic synthesis and small‐molecule activation.  相似文献   

14.
Vinylcyclopropanes (VCPs) are commonly used in transition‐metal‐catalyzed cycloadditions, and the utilization of their recently realized reactivities to construct new cyclic architectures is of great significance in modern synthetic chemistry. Herein, a palladium‐catalyzed, visible‐light‐driven, asymmetric [5+2] cycloaddition of VCPs with α‐diazoketones is accomplished by switching the reactivity of the Pd‐containing dipolar intermediate from an all‐carbon 1,3‐dipole to an oxo‐1,5‐dipole. Enantioenriched seven‐membered lactones were produced with good reaction efficiencies and selectivities (23 examples, 52–92 % yields with up to 99:1 er and 12.5:1 dr). In addition, computational investigations were performed to rationalize the observed high chemo‐ and periselectivities.  相似文献   

15.
We report the synthesis and characterization of a neutral heteroleptic IrIII complex bearing 6‐fluoro‐2‐phenylbenzo[d]thiazole as cyclometalating ligand and (Z)‐6‐(9H‐carbazol‐9‐yl)‐5‐hydroxy‐2,2‐dimethylhex‐4‐en‐3‐one as ancillary ligand. The photodeactivation mechanisms have been elucidated through extensive density functional theory (DFT) calculations. The active role of metal‐centered (3MC) triplet excited states in the nonradiative deactivation pathways is, for first time, confirmed in such complexes.  相似文献   

16.
17.
A DFT analysis of the epoxidation of C2H4 by H2O2 and MeOOH (as models of tert‐butylhydroperoxide, TBHP) catalyzed by [Cp*MoO2Cl] ( 1 ) in CHCl3 and by [Cp*MoO2(H2O)]+ in water is presented (Cp*=pentamethylcyclopentadienyl). The calculations were performed both in the gas phase and in solution with the use of the conductor‐like polarizable continuum model (CPCM). A low‐energy pathway has been identified, which starts with the activation of ROOH (R=H or Me) to form a hydro/alkylperoxido derivative, [Cp*MoO(OH)(OOR)Cl] or [Cp*MoO(OH)(OOR)]+ with barriers of 24.9 (26.5) and 28.7 (29.2) kcal mol?1 for H2O2 (MeOOH), respectively, in solution. The latter barrier, however, is reduced to only 1.0 (1.6) kcal mol?1 when one additional water molecule is explicitly included in the calculations. The hydro/alkylperoxido ligand in these intermediates is η2‐coordinated, with a significant interaction between the Mo center and the Oβ atom. The subsequent step is a nucleophilic attack of the ethylene molecule on the activated Oα atom, requiring 13.9 (17.8) and 16.1 (17.7) kcal mol?1 in solution, respectively. The corresponding transformation, catalyzed by the peroxido complex [Cp*MoO(O2)Cl] in CHCl3, requires higher barriers for both steps (ROOH activation: 34.3 (35.2) kcal mol?1; O atom transfer: 28.5 (30.3) kcal mol?1), which is attributed to both greater steric crowding and to the greater electron density on the metal atom.  相似文献   

18.
Long live the OLED! Rational design and synthesis of IrIII complexes bearing two cyclometalated ligands (C N) and one 2‐(diphenylphosphino)phenolate chelate (P O) as well as the corresponding IrIII derivatives with only one (C N) ligand and two P O chelates are reported. According to the observed photophysical data, a P O ligand is found to be able to fine‐tune the light‐emitting electronic transition of these complexes.

  相似文献   


19.
The hydroformylation of terminal alkenes is one of the most important homogeneously catalyzed processes in industry, and the atomistic understanding of this reaction has attracted enormous interest in the past. Herein, the whole catalytic cycle for rhodium‐catalyzed hydroformylation with the 6‐diphenylphosphinopyridine‐(2H)‐1‐one (6‐DPPon) ligand 1 was studied. This catalytic transformation is challenging to describe computationally, since two requirements must be met: 1) changes in the hydrogen‐bond network must be modeled accurately and 2) bond‐formation/bond‐breaking processes in the coordination sphere of the rhodium center must be calculated accurately. Depending on the functionals used (BP86, B3LYP), the results were found to differ strongly. Therefore, the complete cycle was calculated by using highly accurate CCSD(T) computations for a PH3 model ligand. By applying an integrated molecular orbital plus molecular orbital (IMOMO) method consisting of CCSD(T) as high level and DFT as low‐level method, excellent agreement between the two functionals was achieved. To further test the reliability of the calculations, the energetic‐span model was used to compare experimentally derived and computed activation barriers. The accuracy of the new IMOMO method apparently makes it possible to predict the catalytic potential of real‐world systems.  相似文献   

20.
The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol?1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol?1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号