首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New iridium tetrazolate complexes containing o‐, m‐, or p‐carboranyl substitution in different positions of a phenylpyridine ligand have been prepared. The carborane isomers and the effect of their substitution position in the tuning of optical properties have been examined. The neutral complexes with the carboranyl substituent on the phenyl ring in meta position relative to the metal exhibit redshifted emission bands in contrast to blueshifts for those with carboranyl in para position. All cationic complexes display evidently blueshifted dual‐peak emission compared with the carborane‐free complex (c‐ TZ ) with a broad single‐peak emission. Introduction of carborane leads to a blueshift over 70 nm relative to c‐ TZ . Carboranes also significantly improve phosphorescence efficiency (ΦP) and lifetime (τ), that is, ΦP=0.64 versus 0.21 (c‐ TZ ) and τ=880 ns versus 241 ns (c‐ TZ ). The unique hydrophilic nido‐carborane‐based IrIII complex nidoo‐ 1 shows the largest phosphorescence efficiency (abs ΦP=0.57) among known water‐soluble iridium complexes, long emission lifetime (τ=4.38 μs), as well as varying emission efficiency and lifetime with O2 content in aqueous solution. Therefore, nidoo‐ 1 has been used as an excellent oxygen‐sensitive phosphor for intracellular O2 sensing and hypoxia imaging.  相似文献   

2.
A series of half‐sandwich rhodium‐based metallamacrocycles with tetra‐ and hexanuclearities have been synthesized. They are assembled by linking the deprotonated 2,4‐diacetyl‐5‐hydroxy‐5‐methyl‐3‐(3‐pyridinyl)cyclohexanone (HL) ligand in the presence of counteranions. When the counteranion was the tetrahedral BF4? ion, tetranuclear metallamacrocycle [(Cp*RhL)4][BF4]4 ( 1 d ) was formed. However, the larger OTf?, PF6?, and SbF6? counterions favored the formation of hexanuclear metallamacrocycles [(Cp*RhL)6?2OTf][OTf]4 ( 1 a ), [(Cp*RhL)6?2PF6][PF6]4 ( 1 b ), and [(Cp*RhL)6?2SbF6][SbF6]4 ? 6CH3CN ( 1 c ) when the reactions were performed under the same conditions. Single‐crystal X‐ray analysis indicated that, in the solid state, two counteranions were encapsulated in each belt‐like host molecule of hexanuclear metallamacrocycles 1 a , b , and c . Based on the results of 1H NMR analysis in methanol, the nuclearities of 1 a – c and the two encapsulated anions in each molecular cavity were maintained in solution. In addition, tetranuclear metallamacrocycle 1 d was converted into the hexanuclear metallamacrocycles 1 a′ , b , and c after addition of the appropriate anion as its [NBu4]+ salt. The compound 1 a′ was characterized by single‐crystal X‐ray diffraction to have the formula [(Cp*RhL)6?2OTf][BF4]4 ? 2M eOH ? 2H2O. From the interconversion of the hexanuclear metallamacrocycles, we have concluded that the hexanuclear belt‐like host in 1 a – c has an clear selectivity for larger anions, in the sequence SbF6?≈PF6?>OTf?>BF4?>Cl?.  相似文献   

3.
A series of tetragold(I) complexes supported by tetraphosphine ligands, meso‐ and rac‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (meso‐ and rac‐dpmppm) were synthesized and characterized to show that the tetranuclear AuI alignment varies depending on syn‐ and anti‐arrangements of the two dpmppm ligands with respect to the metal chain. The structures of syn‐[Au4(meso‐dpmppm)2X]X′3 (X=Cl; X′=Cl ( 4 a ), PF6 ( 4 b ), BF4 ( 4 c )) and syn‐[Au4(meso‐dpmppm)2]X4 (X=PF6 ( 4 d ), BF4 ( 4 e ), TfO ( 4 f ); TfO=triflate) involved a bent tetragold(I) core with a counter anion X incorporated into the bent pocket. Complexes anti‐[Au4(meso‐dpmppm)2]X4 (X=PF6 ( 5 d ), BF4 ( 5 e ), TfO ( 5 f )) contain a linearly ordered Au4 string and complexes syn‐[Au4(rac‐dpmppm)2X2]X′2 (X=Cl, X′=Cl ( 6 a ), PF6 ( 6 b ), BF4 ( 6 c )) and syn‐[Au4(rac‐dpmppm)2]X4 (X=PF6 ( 6 d ), BF4 ( 6 e ), TfO ( 6 f )) consist of a zigzag tetragold(I) chain supported by the two syn‐arranged rac‐dpmppm ligands. Complexes 4 d–f , 5 d–f , and 6 d–f with non‐coordinative large anions are strongly luminescent in the solid state (λmax=475–515 nm, Φ=0.67–0.85) and in acetonitrile (λmax=491–520 nm, Φ=0.33–0.97); the emission was assigned to phosphorescence from 3[dσ*σ*σ*pσσσ] excited state of the Au4 centers on the basis of DFT calculations as well as the long lifetime (a few μs). The emission energy is predominantly determined by the HOMO and LUMO characters of the Au4 centers, which depend on the bent ( 4 ), linear ( 5 ), and zigzag ( 6 ) alignments. The strong emissions in acetonitrile were quenched by chloride anions through simultaneous dynamic and static quenching processes, in which static binding of chloride ions to the Au4 excited species should be the most effective. The present study demonstrates that the structures of linear tetranuclear gold(I) chains can be modified by utilizing the stereoisomeric tetraphosphines, meso‐ and rac‐dpmppm, which may lead to fine tuning of the strongly luminescent properties intrinsic to the AuI4 cluster centers.  相似文献   

4.
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively).  相似文献   

5.
A series of phosphorescent terpyridyl platinum(II) complexes with ancillary biphenylacetylide ligands, namely, [(R3tpy)PtC≡C(biphenyl)]X (R=tBu, H, or Et2N; tpy=2,2′;6′,2′′‐terpyridyl; X is an anion) were synthesized and structurally characterized by various spectroscopic techniques and X‐ray diffraction methods. Despite a lack of long alkyl chain(s) or hydrogen‐bonding motif(s), complexes [(tpy)PtC≡C(biphenyl)]Cl and [(tBu3tpy)PtC≡C(biphenyl)]X (X=Cl, ClO4, PF6, or BF4) were found to gelate water and organic solvents, respectively. The self‐aggregation of these complexes in solutions and the resulting gels were investigated with variable‐temperature (VT) 1H NMR spectroscopy, polarized optical microscopy, and absorption/emission spectroscopy. SEM micrographs on dry gels revealed entangled nanofibers with diameters of 20–40 nm and lengths of tens of micrometers. Powder X‐ray diffraction (PXRD) study revealed various degrees of crystallinity of these fibrillar nanostructures. The substituents on both the terpyridyl and acetylide ligands and counterion of these complexes play a profound but concerted role in tuning the intermolecular metal???metal and/or π–π interactions, and hence the gelation properties.  相似文献   

6.
The structure–property relationship of carborane‐modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o‐carborane‐containing pyridine ligands a – f in high yields was developed by utilizing stable and cheap B10H10(Et4N)2 as the starting material. By using these ligands, iridium(III) complexes I – VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nidoo‐carborane‐based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. =0.48) among known water‐soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 μs) in aqueous solution. Both of them are sensitive to O2, and thus endocellular hypoxia imaging of complex VII was realized by time‐resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water‐soluble nido‐carborane functionalized iridium(III) complex.  相似文献   

7.
A series of fluorescent imidazolium‐based salts containing the cation [AnCH2MeIm]+ (in which An=anthracene and Im=the imidazolium cation) with Cl?, BF4?, PF6?, SO3CF3?, [N(CN)2]?, [N(SO2CF3)2]?, or PhBF3? anions have been prepared and characterized. X‐ray diffraction analysis of four of the salts reveals a number of C? H???X‐type (X=O, N, F) hydrogen bonds between the hydrogen atoms from the imidazolium ring and in some cases from the anthracene ring with the electronegative atoms of the anions. Additionally, C? H???π interactions can be found in all the salts analyzed by X‐ray diffraction, whereas π–π stacking is observed only in the salt containing the phenyltrifluoroborate anion. Fluorescence emission analysis in acetonitrile shows that the fluorescence of these salts varies significantly according to the nature of the anion, and correlates to the extent of ion pairing present in solution. Photodimerization of these salts was observed, and in one case a dimer has been isolated and characterized by X‐ray crystallography.  相似文献   

8.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

9.
The crystal structures of numerous iodinated ortho‐carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature—mostly as it relates to hydrogen and/or halogen bonds—and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho‐carboranes: 9‐I‐1,2‐closo‐C2B10H11, 4,5,7,8,9,10,11,12‐I8‐1,2‐closo‐C2B10H4, 3,4,5,6,7,8,9,10,11,12‐I10‐1,2‐closo‐C2B10H2, 1‐Me‐8,9,10,12‐I4‐1,2‐closo‐C2B10H7, 1,2‐Me2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6, and 1,2‐Ph2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6. Their 3D supramolecular organization has been thoroughly investigated and compared to similar previously published crystal structures. Such a systematic survey has allowed us to draw some general trends. Cc? H???I? B hydrogen bonds (Cc= cluster carbon atoms) appear to be significant in the growth of the crystal lattices of these compounds, given the acidity of hydrogen atoms bonded to Cc, and the polarization of B? I bonds. These hydrogen bonds can be disrupted by selectively blocking the positions next to Cc, that is, B(3) and B(6), with bulky substituents that prevent iodine atoms from approaching as hydrogen acceptors. Halogen bonds of the type B? I???I? B are frequently observed in most cases, thus suggesting that these interactions could be attractive in boron clusters. In addition, different substituents can be grafted onto the ortho‐carborane surface, thereby providing further possibilities for homomeric or heteromeric molecular assembly.  相似文献   

10.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

11.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

12.
A nonintuitive observation of monovalent anion‐induced ion current rectification inversion at polyimidazolium brush (PimB)‐modified nanopipettes is presented. The rectification inversion degree is strongly dependent on the concentration and species of monovalent anions. For chaotropic anions (for example, ClO4?), the rectification inversion is easily observed at a low concentration (5 mm ), while there is no rectification inversion observed for kosmotropic anions (Cl?) even at a high concentration (1 m ). Moreover, at the specific concentration (for example, 10 mm ), the variation of rectification ratio on the type of anions is ranged by Hofmeister series (Cl?≥NO3?>BF4?>ClO4?>PF6?>Tf2N?). Estimation of the electrokinetic charge density (σek) demonstrates that rectification inversion originates from the charge inversion owing to the over‐adsorption of chaotropic monovalent anion. To qualitatively understand this phenomenon, a concentration‐dependent adsorption mechanism is proposed.  相似文献   

13.
A series of dicarbene‐bridged metallacycles [Ag2( 1 )2](PF6)2, [Ag2( 2 )2](BF4)2, [Ag2( 3 )2](PF6)2, [Ag2( 7 )2](BF4)2, [Ag2( 8 )2](BF4)2 and [Ag2( 11 )2](PF6)2 were obtained in high yields via the reactions of 1,2,4‐triazole‐, 1,2,3‐triazole‐ and imidazo[1,5‐a]pyridine‐based ligands with Ag2O in CH3CN. The C=C double bonds in all of the newly synthesized metallacycles went through [2 + 2] photodimerization under UV irradiation condition (λ = 365 nm, T = 298 K) yielding the dinuclear rctt‐cyclobutane‐silver(I) complexes [Ag2( 4 )](PF6)2, [Ag2( 5 )](BF4)2, [Ag2( 6 )](PF6)2, [Ag2( 9 )](BF4)2, [Ag2( 10 )](BF4)2 and [Ag2( 12 )](PF6)2, respectively with quantitative yields. Treatment of the these cyclobutane‐bridged silver(I) complexes with NH4Cl resulted in the exclusive formation of cyclobutane derivatives after removal of the silver(I) metal ions.  相似文献   

14.
Cardiosulfa is a biologically active sulfonamide molecule that was recently shown to induce abnormal heart development in zebrafish embryos through activation of the aryl hydrocarbon receptor (AhR). The present report is a systematic study of solid‐state forms of cardiosulfa and its biologically active analogues that belong to the N‐(9‐ethyl‐9H‐carbazol‐3‐yl)benzene sulfonamide skeleton. Cardiosulfa (molecule 1 ; R1=NO2, R2=H, R3=CF3), molecule 2 (H, H, CF3), molecule 3 (CF3, H, H), molecule 4 (NO2, H, H), molecule 5 (H, CF3, H), and molecule 6 (H, H, H) were synthesized and subjected to a polymorph search and solid‐state form characterization by X‐ray diffraction, differential scanning calorimetry (DSC), variable‐temperature powder X‐ray diffraction (VT‐PXRD), FTIR, and solid‐state (ss) NMR spectroscopy. Molecule 1 was obtained in a single‐crystalline modification that is sustained by N? H???π and C? H???O interactions but devoid of strong intermolecular N? H???O hydrogen bonds. Molecule 2 displayed a N? H???O catemer C(4) chain in form I, whereas a second polymorph was characterized by PXRD. The dimorphs of molecule 3 contain N? H???π and C? H???O interactions but no N? H???O bonds. Molecule 4 is trimorphic with N? H???O catemer in form I, and N? H???π and C? H???O interactions in form II, and a third polymorph was characterized by PXRD. Both polymorphs of molecule 5 contain the N? H???O catemer C(4) chain, whereas the sulfonamide N? H???O dimer synthon R22(8) was observed in polymorphs of 6 . Differences in the strong and weak hydrogen‐bond motifs were correlated with the substituent groups, and the solubility and dissolution rates were correlated with the conformation in the crystal structure of 1 , 2 , 3 , 4 , 5 , 6 . Higher solubility compounds, such as 2 (10.5 mg mL?1) and 5 (4.4 mg mL?1), adopt a twisted confirmation, whereas less‐soluble 1 (0.9 mg mL?1) is nearly planar. This study provides practical guides for functional‐group modification of drug lead compounds for solubility optimization.  相似文献   

15.
In this paper, a simple strategy to change the emission behaviour of luminogenic materials was developed. Tetraphenylethene (TPE)‐functionalised benzothiazolium salts with different counteranions (TPEBe?X; X=I?, ClO4? and PF6?) were designed and synthesised. All the luminogens show weak red emission in the solution state that originates from intramolecular charge transfer from TPE to the benzothiazolium unit. Whereas aggregate formation enhances the light emission of TPEBe?ClO4 and TPEBe?PF6, that of TPEBe?I is quenched, thus demonstrating the phenomena of aggregation‐induced emission and aggregation‐caused quenching. TPEBe?I works as a light‐up fluorescent sensor for Hg2+ in aqueous solution with high sensitivity and specificity owing to the elimination of the emission quenching effect of the iodide ion by the formation of HgI2 as well as the induction in aggregate formation by the complexation of Hg2+ with the S atom of the benzothiazolium unit of TPEBe?I. A solid film of TPEBe?I was prepared that can monitor the level of Hg2+ in aqueous solution with a detection limit of 1 μM .  相似文献   

16.
Here, we report an iridium(III) coordination system with 2‐aminoethanethiolate (aet), which shows the formation of S?H???S hydrogen and S?S disulfide bonds in a controlled manner. Treatment of fac‐[Ir(aet)3] with aqueous HBF4 under aerobic conditions gave dinuclear [Ir2(aet)4(cysta)]2+ ([ 1 ]2+; cysta=cystamine) with a single S?S disulfide bond, while dimeric [Ir2(aet)3(Haet)3](BF4)3 ([ 2 ](BF4)3) with a triple S?H???S hydrogen bond was formed by similar treatment under anaerobic conditions. Upon exposure to air, [ 2 ]3+ was converted to dinuclear [Ir2(aet)2(Haet)2(cysta)]4+ ([ 3 ]4+), in which two IrIII centers are spanned by a double S?H???S hydrogen bond and a single S?S disulfide bond. Complex [ 3 ]4+ was interconvertible with [ 1 ]2+ via the removal/addition of protons on S donors, accompanied by the intermolecular exchange of the fac‐[Ir(aet)3] units. Complexes [ 1 ]2+, [ 2 ]3+, and [ 3 ]4+, isolated as BF4? salts, were fully characterized by single‐crystal X‐ray crystallography.  相似文献   

17.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

18.
α‐Halogenoacetanilides (X=F, Cl, Br) were examined as H‐bonding organocatalysts designed for the double activation of C?O bonds through NH and CH donor groups. Depending on the halide substituents, the double H‐bond involved a nonconventional C?H???O interaction with either a H?CXn (n=1–2, X=Cl, Br) or a H?CAr bond (X=F), as shown in the solid‐state crystal structures and by molecular modeling. In addition, the catalytic properties of α‐halogenoacetanilides were evaluated in the ring‐opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α‐dichloro‐ and α‐dibromoacetanilides containing electron‐deficient aromatic groups afforded the most attractive double H‐bonding properties towards C?O bonds, with a N?H???O???H?CX2 interaction.  相似文献   

19.
Anion transfer processes at a liquid|liquid interface were studied with an interdigitated gold band array electrode. The organic phase, 4‐(3‐phenylpropyl)‐pyridine containing Co(II)phthalocyanine, was immobilised as random droplets at the electrode surface and then immersed into aqueous electrolyte. Oxidation of Co(II)phthalocyanine at the generator electrode was shown to be associated with anion transfer from the aqueous into the organic phase. The corresponding back reduction at the collector electrode with anion expulsion was delayed by the anion/cation diffusion time across the interelectrode gap. A working curve based on a finite difference numerical simulation model was employed to estimate the apparent diffusion coefficients for anions in the organic phase (PF6?4?3?). Potential applications in ion analysis are discussed.  相似文献   

20.
The 1H NMR chemical shifts of the C(α)? H protons of arylmethyl triphenylphosphonium ions in CD2Cl2 solution strongly depend on the counteranions X?. The values for the benzhydryl derivatives Ph2CH? PPh3+ X?, for example, range from δH=8.25 (X?=Cl?) over 6.23 (X?=BF4?) to 5.72 ppm (X?=BPh4?). Similar, albeit weaker, counterion‐induced shifts are observed for the ortho‐protons of all aryl groups. Concentration‐dependent NMR studies show that the large shifts result from the deshielding of the protons by the anions, which decreases in the order Cl? > Br? ? BF4? > SbF6?. For the less bulky derivatives PhCH2? PPh3+ X?, we also find C? H???Ph interactions between C(α)? H and a phenyl group of the BPh4? anion, which result in upfield NMR chemical shifts of the C(α)? H protons. These interactions could also be observed in crystals of (p‐CF3‐C6H4)CH2? PPh3+ BPh4?. However, the dominant effects causing the counterion‐induced shifts in the NMR spectra are the C? H???X? hydrogen bonds between the phosphonium ion and anions, in particular Cl? or Br?. This observation contradicts earlier interpretations which assigned these shifts predominantly to the ring current of the BPh4? anions. The concentration dependence of the 1H NMR chemical shifts allowed us to determine the dissociation constants of the phosphonium salts in CD2Cl2 solution. The cation–anion interactions increase with the acidity of the C(α)? H protons and the basicity of the anion. The existence of C? H???X? hydrogen bonds between the cations and anions is confirmed by quantum chemical calculations of the ion pair structures, as well as by X‐ray analyses of the crystals. The IR spectra of the Cl? and Br? salts in CD2Cl2 solution show strong red‐shifts of the C? H stretch bands. The C? H stretch bands of the tetrafluoroborate salt PhCH2? PPh3+ BF4? in CD2Cl2, however, show a blue‐shift compared to the corresponding BPh4? salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号