首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Self‐organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self‐oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self‐oxidative degradation.  相似文献   

2.
In this review, we focus on the synthesis of π‐conjugated functional molecules by the oxidation of aromatic amines, which is one of the most effective methods for the construction of C?C, C?N, and N?N bonds between two π‐conjugated molecular units, and consider their characteristics and applications. Polyanilines are the most common products of the oxidation of aromatic amines; however, azobenzenes, phenazines, and 1,1′‐binaphthyl‐2,2′‐diamines may be produced in this manner also, depending on the reaction conditions. Recent advances in the methodology of aniline oxidation have led to the development of high‐regioselectivity industrial‐scale syntheses of optically or electroactive π‐functional dyes containing nitrogen atoms. In particular, the regioselective fusion of π‐extended aromatic amines can be used to prepare distorted π‐conjugated molecules under mild reaction conditions, allowing the construction of unprecedented curved nitrogen‐containing π‐conjugated molecules.  相似文献   

3.
The sequential addition of aromatic Grignard reagents to O‐alkyl thioformates proceeded to completion within 30 s to give aryl benzylic sulfanes in good yields. This reaction may begin with the nucleophilic attack of the Grignard reagent onto the carbon atom of the O‐alkyl thioformates, followed by the elimination of ROMgBr to generate aromatic thioaldehydes, which then react with a second molecule of the Grignard reagent at the sulfur atom to form arylsulfanyl benzylic Grignard reagents. To confirm the generation of aromatic thioaldehydes, the reaction between O‐alkyl thioformates and phenyl Grignard reagent was carried out in the presence of cyclopentadiene. As a result, hetero‐Diels–Alder adducts of the thioaldehyde and the diene were formed. The treatment of a mixture of the thioformate and phenyl Grignard reagent with iodine gave 1,2‐bis(phenylsulfanyl)‐1,2‐diphenyl ethane as a product, which indicated the formation of arylsulfanyl benzylic Grignard reagents in the reaction mixture. When electrophiles were added to the Grignard reagents that were generated in situ, four‐component coupling products, that is, O‐alkyl thioformates, two molecules of Grignard reagents, and electrophiles, were obtained in moderate‐to‐good yields. The use of silyl chloride or allylic bromides gave the adducts within 5 min, whereas the reaction with benzylic halides required more than 30 min. The addition to carbonyl compounds was complete within 1 min and the use of lithium bromide as an additive enhanced the yields of the four‐component coupling products. Finally, oxiranes and imines also participated in the coupling reaction.  相似文献   

4.
Facile synthesis of bicyclic ureas by NIS/PhI(OAc)2‐mediated diamination/oxidation of N‐alkenyl formamidines is reported. Bulky aromatic groups such as 2,6‐diisopropylphenyl and mesityl and alkyl groups were tolerated towards the process. Several control experiments have been performed, and the reaction outcomes indicate that the oxidation process is probably concerted with the diamination cyclization, and succinimide generated from NIS‐mediated aminoamidiniumation step promoted the PhI(OAc)2‐mediated oxidation step. The new methodology provides an efficient method for the synthesis of fused tricyclic ureas.  相似文献   

5.
α‐Methylstyrene ( 1 ) was photo‐oxidized in the presence of a series of alkylated dimethoxybenzenes as sensitizers in an oxygen‐saturated MeCN solution to afford the cleaved ketone 2 , epoxide 3 , as well as a small amount of the ene product 4 in ca. 1 : 1 : 0.04 ratio. The relative rate of conversion was well‐correlated with the fluorescence quantum yield of sensitizers. Thus, a non‐singlet‐oxygen mechanism is proposed, in which an excited sensitizer is quenched by (ground‐state) molecular oxygen to produce a sensitizer radical cation and a superoxide ion (O), the former of which oxidizes the substrate, while the latter reacts with the resulting olefin radical cation ( 1 + .) to give the major oxidation products. Photodurability of such electron‐donating sensitizers is dramatically improved by substituting four aromatic H‐atoms in 1,4‐dimethoxybenzene with Me or fused alkyl groups, which provides us with an environmentally friendly, clean method of photochemical functionalization with molecular oxygen, alternative to the ene reaction via singlet oxygenation.  相似文献   

6.
The oxidation of lipids by endogenous or environmental reactive oxygen species (ROS) generates a myriad of different lipid oxidation products that have important roles in disease pathology. The lipid oxidation products obtained in these reactions are dependent upon the identity of the reacting ROS. The photoinduced deoxygenation of various aromatic heterocyclic oxides has been suggested to generate ground state atomic oxygen (O[3P]) as an oxidant; however, very little is known about reactions between lipids and O(3P). To identify lipid oxidation products arising from the reaction of lipids with O(3P), photoactivatable precursors of O(3P) were irradiated in the presence of lysoplasmenylcholine, low‐density lipoprotein and RAW 264.7 cells under aerobic and anaerobic conditions. Four different aldehyde products consistent with the oxidation of plasmalogens were observed. The four aldehydes were: tetradecanal, pentadecanal, 2‐hexadecenal and hexadecanal. Depending upon the conditions, either pentadecanal or 2‐hexadecenal was the major product. Increased amounts of the aldehyde products were observed in aerobic conditions.  相似文献   

7.
A novel CoII‐catalyzed polyene cyclization was developed that is uniquely effective when performed in hexafluoroisopropanol as the solvent. The process is presumably initiated by metal‐catalyzed hydrogen‐atom transfer (MHAT) to 1,1‐disubstituted or monosubstituted alkenes, and the reaction is remarkable for its tolerance of internal alkenes bearing either electron‐rich methyl or electron‐deficient nitrile substituents. Electron‐rich aromatic terminators are required in both cases. Terpenoid scaffolds with different substitution patterns are obtained with excellent diastereoselectivities, and the bioactive C20‐oxidized abietane diterpenoid carnosaldehyde was made to showcase the utility of the nitrile‐bearing products. Also provided are the results of several mechanistic experiments that suggest the process features an MHAT‐induced radical bicyclization with late‐stage oxidation to regenerate the aromatic terminator.  相似文献   

8.
5‐Amino‐thieno[3,2‐c]pyrazole derivative 2 was prepared by Gewald reaction in a one‐pot procedure. The amino group of compound 2 like primary aromatic amine formed the diazonium salt when treated with NaNO2/HCl, followed by coupling with different nucleophiles to yield the azo coupling products 3a – d . The reactivity of 5‐amino‐thienopyrazole 2 has been investigated towards different electrophilic reagents such as aromatic aldehydes, alkyl halide, acid chloride, acid anhydride, phenyl isothiocyanate, carbon disulfide, ethyl glycinate, and thioacetamide, which afforded the reaction products 4 – 14 , respectively.  相似文献   

9.
Copper complexes bearing readily available ligand systems catalyzed the oxidation of alkanes with H2O2 as the oxidant with high efficiency in remarkable yields (50–60 %). The reactions proceeded with unprecedented selectivity to give alkyl hydroperoxides as the major products. Detailed scrutiny of the reaction mechanism suggests the involvement of C‐centered and O‐centered radicals generated in a Fenton‐like fashion.  相似文献   

10.
An efficient, diastereoselective synthesis of substituted and unsubstituted 2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters has been developed based on the tandem reduction‐reductive amination reac tion. Catalytic hydrogenation of a series of 2‐(2‐nitrophenyl)‐5‐oxoalkanoic esters initiates a reaction sequence involving (1) reduction of the aromatic nitro group, (2) condensation of the N‐hydroxylamino (or amino) nitrogen with the side chain carbonyl, and (3) reduction of the seven‐membered cyclic imine. Cyclizations that produce 2‐alkyl‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters are diastereose lective for the product having the C2 alkyl and the C5 ester groups cis. In these reactions, the transannular ester group exerts a strong stereodirecting effect on the reduction of the cyclic imine intermediate, though not as strong as that observed in previous closures of 2‐alkyl‐1,2,3,4‐tetrahydroquinoline‐4‐carboxylic esters. This decrease in diastereoselectivity is attributed to (1) the greater distance between the ester and the imine double bond and (2) the increased conformational mobility of the larger ring, both of which diminish the stereodirecting effect of the ester. Finally, formation of the seven‐membered ring is sufficiently slow that reaction with the side chain ester group competes with heterocycle formation in several of the reactions.  相似文献   

11.
A series of pyrene‐based bisazolium salts have been obtained starting from 4,5,9,10‐tetrabromo‐2,7‐di‐tert‐butylpyrene. The synthetic procedure to the pyrene‐bisazoliums (PBIs) reveals an unexpected behavior, as a consequence of the presence of the alkyl groups (alkyl=Me, Et, n‐Pr, and n‐Bu) coming from the trisalkoxyformate in the final products, instead of the expected tBu of tAmyl groups from the starting tetra‐aminated pyrenes. All bisazoliums show fluorescence properties, with emissions in the range of 370–420 nm, and quantum yields ranging from 0.29 to 0.41. The PBIs were used as bis‐NHC precursors in the preparation of a series of dirhodium and diiridium complexes, which have been fully characterized. The electrochemical studies on selected dimetallic complexes reveal that the electronic communication between the metals through the polyaromatic linker is negligible.  相似文献   

12.
In oxidative electrochemical organic synthesis, radical intermediates are often oxidized to cations on the way to final product formation. Herein, we describe an approach to transform electrochemically generated organic radical intermediates into neutral products by reaction with a metal catalyst. This approach combines electrochemical oxidation with Cu catalysis to effect formal aza‐Wacker cyclization of internal alkenes. The Cu catalyst is essential for transforming secondary and primary alkyl radical intermediates into alkenes. A wide range of 5‐membered N‐heterocycles including oxazolidinone, imidazolidinone, thiazolidinone, pyrrolidinone, and isoindolinone can be prepared under mild conditions.  相似文献   

13.
The introduction of ester groups on the 5‐ and 15‐meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15‐diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single‐crystal X‐ray structure analysis of five 5,15‐diestercorroles and DFT and time‐dependent DFT calculations show that the strong electron‐withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2 , 4 , 6 , 9 , and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso‐ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form.  相似文献   

14.
On‐line LC‐EC/ESI‐MS has been established as a fast and simple method to mimic some types of oxidation reaction of various drugs and to study the formation and structure of the resulting products. This technique has been applied to a 2,6,9‐trisubstituted purine, R‐roscovitine, which is known to be an inhibitor of some cyclin‐dependent kinases (CDKs) and a potential anticancer drug. Oxidation of R‐roscovitine in an electrochemical cell (EC), operated under various conditions, resulted in appearance of 6 major products. These were further analyzed by high‐resolution mass spectrometry, their structures were elucidated by accurate mass measurement and compared to previously identified R‐roscovitine in vitro/in vivo metabolites. Although none of the observed products was structurally identical to those identified previously in vitro/in vivo, all of them, except for the methoxylated products, resembled similarity due to appearing through the same reaction type. R‐roscovitine in the EC cell underwent N‐dealkylation of the isopropyl moiety, hydroxylation of the aromatic side‐chain, dihydroxylation, methoxylation and dimer formation. The hydroxylation product was identified as Olomoucine II, a R‐roscovitine derivative, which displays 10‐times higher CDK‐inhibiting activity than R‐roscovitine and the occurrence of which, as R‐roscovitine product, has not yet been observed in vitro/in vivo.  相似文献   

15.
Transition‐metal‐free formal Sonogashira coupling and α‐carbonyl arylation reactions have been developed. These transformations are based on the nucleophilic aromatic substitution (SNAr) of β‐carbonyl sulfones to electron‐deficient aryl fluorides, producing a key intermediate that, depending on the reaction conditions, gives the aromatic alkynes or α‐aryl carbonyl compounds. The development of these reactions is presented and, based on investigations under basic and acidic conditions, mechanisms have been proposed. To develop the formal Sonogashira coupling further, a milder, two‐step protocol is also disclosed that expands the reaction concept. The scope of these reactions is demonstrated for the synthesis of Sonogashira and α‐carbonyl arylated products from a range of electron‐deficient aryl fluorides with a variety of functional groups and aryl‐, heteroaryl‐, alkyl‐, and alkoxy‐substituted sulfone nucleophiles. These transition‐metal‐free reactions complement the metal‐catalyzed versions in terms of substitution patterns, simplicity, and reaction conditions.  相似文献   

16.
Oxidation of 3‐furfurylcarbinols 3a‐e and 7 with bromine in acetone‐water solution gave the 2‐substituted‐3‐furfurals 4a‐e and 8 in good yields, respectively. Reaction of 2‐alkyl‐3‐furfurylcarbinols 9a and 9b with bromine in acetone‐water gave the bromoalkyl 3‐furfuryl ketones 10a and 10b as the major products. A reaction mechanism via the cis‐trans isomerization of the 2‐ene‐1,4‐diones 13 and 14 was proposed to account for the transposition of the alkyl group of the 3‐furfurylcarbinols 3, 7 and 9 to the 2‐position on the furan ring of the products 4, 8 and 10.  相似文献   

17.
Useful oxidation reaction of 2‐alkyl(aryl)‐3‐methylthiopyrano[4,3‐c]pyrazol‐4(2H)‐ones, leading to either the corresponding sulfoxides or sulfones, using hydrogen peroxide and acetic acid in 1,2‐dichloroethane, is described. Bioassay results showed that the products have some herbicidal activity. © 2005 Wiley Periodicals, Inc. 16:255–258, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20067  相似文献   

18.
We report a highly efficient Friedel–Crafts reaction of 3‐alkyl or 3‐aryl 3‐hydroxyoxindoles with a variety of aromatic and heteroaromatic compounds to unsymmetrical 3,3‐diaryloxindoles or 3‐alkyl‐3‐aryloxindoles, which are interesting medicinal targets and useful building blocks for the synthesis of natural products. Hg(ClO4)2 ? 3 H2O was identified as a powerful catalyst for this reaction, and is significantly more efficient than other screened metal perchlorate hydrates and Brønsted acids such as HOTf and HClO4. The high catalytic property of Hg(ClO4)2 ? 3 H2O originates from the unprecedented dual activation effects of aromatic mercuration, which could generate a strong protic acid to facilitate the generation of a carbocation at the C3‐position of oxindoles and simultaneously form the more reactive nucleophilic reaction partner.  相似文献   

19.
Over the past 150 years, a certain mythology has arisen around the mechanistic pathways of the oxygenation of organometallics with non‐redox‐active metal centers as well as the character of products formed. Notably, there is a widespread perception that the formation of commonly encountered metal alkoxide species results from the auto‐oxidation reaction, in which a parent metal alkyl compound is oxidized by the metal alkylperoxide via oxygen transfer reaction. Now, harnessing a well‐defined zinc ethylperoxide incorporating a β‐diketiminate ligand, the investigated alkylperoxide compounds do not react with the parent metal alkyl complex as well as Et2Zn to form a zinc alkoxide. Upon treatment of the zinc ethylperoxide with Et2Zn, a previously unobserved ligand exchange process is favored. Isolation of a zinc hydroxide carboxylate as a product of decomposition of the parent zinc ethylperoxide demonstrates the susceptibility of the latter to O?O bond homolysis.  相似文献   

20.
Lignin oxidation offers a potential sustainable pathway to oxygenated aromatic molecules. However, current methods that use real lignin tend to have low selectivity and a yield that is limited by lignin degradation during its extraction. We developed stoichiometric and catalytic oxidation methods using 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) as oxidant/catalyst to selectively deprotect the acetal and oxidize the α‐OH into a ketone. The oxidized lignin was then depolymerized using a formic acid/sodium formate system to produce aromatic monomers with a 36 mol % (in the case of stoichiometric oxidation) and 31 mol % (in the case of catalytic oxidation) yield (based on the original Klason lignin). The selectivity to a single product reached 80 % (syringyl propane dione, and 10–13 % to guaiacyl propane dione). These high yields of monomers and unprecedented selectivity are attributed to the preservation of the lignin structure by the acetal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号