首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol‐to‐olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H‐SAPO‐34 and H‐SSZ‐13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol‐treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time‐dependent density functional theory (TDDFT) calculations. Static gas‐phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.  相似文献   

2.
The UV/Vis spectra of selected substituted subporphyrazines (SubPz) and subphthalocyanines (SubPc) with aluminum and gallium as central atoms are analyzed through time‐dependent DFT calculations in chloroform. The results are compared with previous results with boron as the central atom to analyze the photochemical properties of these two families of compounds on varying the metal along the same group. The absorptions of SubPz (Al, Ga) are redshifted or blueshifted with respect to SubPz (B) depending on the nature of the R substituents of the molecule, whereas the absorptions of SubPc (Al, Ga) structures are redshifted and with smaller energy gaps with respect to SubPc (B) for all kinds of R substituents. Looking at their absorption spectra, these systems with aluminum and gallium may also have, as in the case of boron, promising photochemical properties.  相似文献   

3.
Phthalazinone derivatives were designed as optical probes for one‐ and two‐photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron‐donating aromatic groups such as N,N‐diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N‐methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty‐two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two‐photon microscopic imaging of mouse brain slices.  相似文献   

4.
《化学:亚洲杂志》2018,13(19):2881-2890
A set of 1,8‐naphthalimide (NPI)‐substituted 4,4‐difluoroboradiaza‐s‐indacene (BODIPY) dyads 1 a – 1 c were designed and synthesized by the Pd‐catalyzed Sonogashira cross‐coupling reaction of ethynyl substituted NPI 1 with the meso‐, β‐, and α‐halogenated BODIPYs a , b , and c , respectively. The BODIPY 1 c exhibits redshifted absorption, which suggests better electronic communication with substitution at the α‐position of BODIPY compared with at the meso and β positions, which was further supported by time‐dependent DFT calculations. The optical band gap follows the order 1 a > 1 b > 1 c . The single‐crystal X‐ray structures of dyads 1 a – 1 c are reported, which reflect planar orientations of the BODIPY units with respect to the NPIs. The DFT‐optimized structures show good correlation with the experimental data obtained from the single‐crystal X‐ray structures. The packing diagram of 1 a shows a sheet‐like arrangement, 1 b forms a ladder‐like structural motif, and 1 c forms a complex 3D structural arrangement. The dyads 1 a – 1 c show low cytotoxicity (IC50>100 μm ). The confocal microscopy studies with HeLa and A375 cells (when treated with dyads 1 a – 1 c ) show that all the dyads easily enter the cell membrane and show significant multicolor intracellular fluorescence covering the entire visible range with clear emissions in blue, green, and red channels.  相似文献   

5.
A tetraphenylethene (TPE) derivative substituted with the electron‐acceptor 1,3‐indandione (IND) group was designed and prepared. The targeted IND‐TPE reserves the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, owing to the decorated IND moiety, IND‐TPE demonstrates intramolecular charge‐transfer process and pronounced solvatochromic behavior. When the solvent is changed from apolar toluene to highly polar acetonitrile, the emission peak redshifts from 543 to 597 nm. IND‐TPE solid samples show an evident mechanochromic process. Grinding of the as‐prepared powder sample induces a redshift of emission from green (peak at 515 nm) to orange (peak at 570 nm). The mechanochromic process is reversible in multiple grinding–thermal annealing and grinding–solvent‐fuming cycles, and the emission of the solid sample switches between orange (ground) and yellow (thermal/solvent‐fuming‐treated) colors. The mechanochromism is ascribed to the phase transition between amorphous and crystalline states. IND‐TPE undergoes a hydrolysis reaction in basic aqueous solution, thus the red‐orange emission can be quenched by OH? or other species that can induce the generation of sufficient OH?. Accordingly, IND‐TPE has been used to discriminatively detect arginine and lysine from other amino acids, due to their basic nature. The experimental data are satisfactory. Moreover, the hydrolyzation product of IND‐TPE is weakly emissive in the resultant mixture but becomes highly blue‐emissive after the illumination for a period by UV light. Thus IND‐TPE can be used as a dual‐responsive fluorescent probe, which may extend the application of TPE‐based molecular probes in chemical and biological categories.  相似文献   

6.
The spectroscopic characterization of corannulene (C20H10) is carried out by several techniques. The high purity of the material synthesized for this study was confirmed by gas chromatography‐mass spectrometry (GC‐MS). During a high‐performance liquid chromatography (HPLC) process, the absorption spectrum of corannulene in the ultraviolet (UV) and visible (vis) ranges is obtained. The infrared (IR) absorption spectrum is measured in CsI pellets, and the Raman scattering spectrum is recorded for pure crystal grains. In addition to room temperature measurements, absorption spectroscopy in an argon matrix at 12 K is also performed in the IR and UV/Vis ranges. The experimental spectra are compared with theoretical Raman and IR spectra and with calculated electronic transitions. All calculations are based on the density functional theory (DFT), either normal or time‐dependent (TDDFT). Our results are discussed in view of their possible application in the search for corannulene in the interstellar medium.  相似文献   

7.
A spectroelectrochemical study of the two isostructural asymmetric perfluoroalkyl derivatives C1‐7,24‐C70(CF3)2 and C1‐7,24‐C70(C2F5)2 is presented. Reversible formation of their stable monoanion radicals is monitored by cyclic voltammetry and by in situ ESR‐Vis‐NIR spectroelectrochemistry. The ESR spectrum of the C70(CF3)2?. radical is a 1:3:3:1 quartet with a 19F hyperfine coupling constant (a(F)) of 0.323(4) G, demonstrating that the unpaired spin is coupled to only one of the two CF3 groups. The 13C satellites are assigned to specific carbon atoms. The ESR spectrum of the C70(C2F5)2?. radical is an apparent octet with an apparent a(F) value of 0.83(2) G. DFT calculations suggest that this pattern is due to the superposition of spectra for four nearly isoenergetic C70(C2F5)2?. conformers. Time‐dependent DFT calculations suggest that the NIR band at 1090 nm exhibited by both C70(Rf)2?. radical anions is assigned to the SOMO→LUMO+3 transition. The analogous NIR band exhibited by the closed‐shell C70(CF3)22? dianion was blue‐shifted to 1000 nm.  相似文献   

8.
Three boradiazaindacene (BODIPY) dyes with different‐coloured (greenish‐yellow, orange and red) fluorescence and good Stokes shifts were synthesised starting from the greenish‐yellow BODIPY dye PM546. The high Stokes shifts of the dyes are due to the release of the steric strain in their excited states relative to that in the highly twisted ground states. One of these compounds might be a useful water‐soluble fluorophore, whereas the other two are promising H+ sensors.  相似文献   

9.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

10.
A series of 6,13‐diamino‐substituted pentacenes 1 a – d has been prepared and characterized as a new class of pentacene derivatives with strong donor ability and enhanced solubility in common organic solvents. The spectroelectrochemical and DFT studies revealed that the two‐electron oxidation process was accompanied by the substantial structural change into a butterfly‐like conformation of the pentacene moiety. More importantly, the extent of deformation from the planar pentacene moiety in the dications of 6,13‐diaminopentacene is tunable by varying the N‐substituents.  相似文献   

11.
Reactions of three alkynes, namely, 1‐heptyne, 3‐hexyne and 1‐phenyl‐1‐butyne, with [Rh4(CO)9(μ‐CO)3] are performed in anhydrous hexane under argon atmosphere with multiple perturbations of alkynes and [Rh4(CO)9(μ‐CO)3]. The reactions are monitored by in situ UV/Vis spectroscopy, and the collected electronic spectra are further analyzed with the band‐target entropy minimization (BTEM) family of algorithms to reconstruct the pure component spectra. Three BTEM estimates of [(μ4‐η2‐alkyne)Rh4(CO)8(μ‐CO)2], in addition to that of [Rh4(CO)9(μ‐CO)3], are successfully reconstructed from the experimental spectra. Time‐dependent density functional theory (TD‐DFT) predicted spectra at the PBE0/DGDZVP level are consistent with the corresponding BTEM estimates. The present study demonstrates that: 1) the BTEM family of algorithms is successful in analyzing multi‐component UV/Vis spectra and results in good spectral estimates of the trace organometallics present; and 2) the subsequent DFT/TD‐DFT methods provide an interpretation of the nature of the electronic excitation and can be used to predict the electronic spectra of similar transition organometallic complexes.  相似文献   

12.
Tetrakis(bithienyl)methane and tetrakis(terthienyl)methane have been synthesized from tetrakis(2‐thienyl)methane by use of Suzuki–Miyaura coupling as a key reaction. Their trimethylsilyl (TMS) derivatives are also synthesized. X‐ray analysis reveals that each oligothiophene moiety tends to adopt anti‐conformations and show relatively small torsion angles between the adjacent thiophene rings. While the longest absorption maxima of these tetrakis(oligothienyl)methanes exhibit only a slight bathochromic shift compared to the corresponding linear oligothiophene derivative, tetrakis(bithienyl)methane and its TMS derivative exhibit an appreciable red‐shift in their fluorescence spectra. The intramolecular interaction between thienyl groups of tetrakis(2‐thienyl)methane is supported by DFT calculation.  相似文献   

13.
14.
Novel hetero‐π‐conjugated compounds (dibenzochalcogenaborins) with the same molecular framework, bearing a boron atom as an acceptor and chalcogen atoms as a donor, were synthesized, and systematic comparisons among these molecules were performed. X‐ray crystallographic analysis of these molecules showed similar structures with high planarity. UV/Vis spectroscopy and theoretical calculations revealed that the absorption maxima and the HOMO–LUMO gap changed by systematically changing the bridging chalcogen atom. Dibenzooxaborin and dibenzothiaborin showed fluorescence emission both in solution and in the solid state with a small Stokes shift, indicating the high rigidity of these compounds. On the other hand, dibenzoselenaborin exhibited a very weak fluorescence as a result of the heavy atom effect.  相似文献   

15.
The electronic and molecular structures of 9,10‐diamino‐substituted anthracenes with different N‐substituents have been re‐examined. In particular, different N‐substituents influence both the electronic and molecular structures of the oxidized species of 9,10‐diaminoanthracenes. The anthrylene moiety of 9,10‐bis(N,N‐di(p‐anisyl)amino)anthracene retains its planarity during the course of two successive one‐electron oxidations, whereas 9,10‐bis(N,N‐dimethylamino)anthracene and 9,10‐bis(Np‐anisyl‐N‐methylamino)anthracene undergo a substantial structural change to a butterfly‐like structure through a two‐electron oxidation process. The structural changes observed for the oxidized states are ascribed to significant differences in the frontier molecular orbitals of the above‐mentioned three kinds of 9,10‐diaminoanthracenes due to different extents of mixing between the amine‐localized and anthrylene‐localized orbitals.  相似文献   

16.
Photoswitching is an intriguing way of incorporating functionality into molecules or their subunits. Dithienylethene switches are particularly promising, but have so far mostly been studied with five‐membered ring (cyclopentenyl) backbones. We aim at comparing the switching properties of backbones with five and six carbon atoms in the ring. A major advantage is that cyclohexenyl rings offer new options for chiral functionalization. A slight change in the reaction conditions of a McMurry ring closure reaction leads to the formation of dithienyl derivatives with a cyclohexene backbone in reasonable yield. Density functional theory calculations were carried out, demonstrating the similarity of both compounds. Experimental results confirm the theoretical outcomes.  相似文献   

17.
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1).  相似文献   

18.
Electrophilic monofluorination with Selectfluor and nucleophilic trifluoromethylation with the Ruppert–Prakesh reagent of dimethyl‐, tetramethyl‐ and pentamethyl‐substituted boron dipyrromethenes (BODIPY) are investigated. Monofluorinated dyes are synthesized with low yields (<30 %), however trifluoromethyl derivatives are obtained in moderate to high yields (≈40–90 %). All compounds are characterized by steady‐state and time‐resolved fluorescence spectroscopy, the photostability is investigated with fluorescence correlation spectroscopy (FCS) and total internal reflection fluorescence microscopy (TIRF). Monofluorination hardly affects the spectroscopic parameters of the unsubstituted parent compounds, but distinctly enhances the photostability, whereas trifluoromethylation leads to a hypsochromic shift by up to 17 nm in both absorption and emission, slightly enhanced intersystem crossing, and higher photostability. Further development of soft fluorination and trifluoromethylation methods is therefore highly desired.  相似文献   

19.
The absorption properties of chromophores in biomolecular systems are subject to several fine‐tuning mechanisms. Specific interactions with the surrounding protein environment often lead to significant changes in the excitation energies, but bulk dielectric effects can also play an important role. Moreover, strong excitonic interactions can occur in systems with several chromophores at close distances. For interpretation purposes, it is often desirable to distinguish different types of environmental effects, such as geometrical, electrostatic, polarization, and response (or differential polarization) effects. Methods that can be applied for theoretical analyses of such effects are reviewed herein, ranging from continuum and point‐charge models to explicit quantum chemical subsystem methods for environmental effects. Connections to physical model theories are also outlined. Prototypical applications to optical spectra and excited states of fluorescent proteins, biomolecular photoreceptors, and photosynthetic protein complexes are discussed.  相似文献   

20.
《化学:亚洲杂志》2017,12(22):2908-2915
A series of unsymmetrical (D‐A‐D1, D1‐π‐D‐A‐D1, and D1‐A1‐D‐A2‐D1; A=acceptor, D=donor) and symmetrical (D1‐A‐D‐A‐D1) phenothiazines ( 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f , and 5 f′ ) were designed and synthesized by a [2+2] cycloaddition–electrocyclic ring‐opening reaction of ferrocenyl‐substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge‐transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f and 5 f′ show redshifted absorption in the λ =400 to 900 nm region, as a result of a low HOMO–LUMO gap, which is supported by TD‐DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD acceptors. The incorporation of cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号