首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
(E)‐ and (Z)‐5‐(bromomethylene)furan‐2(5H)‐one have been prepared starting from the commercially available adduct between furan and maleic anhydride. A bromodecarboxylation reaction is a key step in the synthesis. The reaction gives the (E)‐ or (Z)‐5‐(bromomethylene)furan‐2(5H)‐one as the major product, dependent on the method used in the bromodecarboxylation.  相似文献   

2.
(E)‐α,β‐Unsaturated pyrazoleamides undergo facile dienolization to furnish copper(I)‐(1Z,3Z)‐dienolates as the major in the presence of a copper(I)‐(R)‐DTBM‐SEGPHOS catalyst and Et3N, which react with aldimines to afford syn‐vinylogous products as the major diastereoisomers in high regio‐ and enantioselectivities. In some cases, the diastereoselectivity is low, possibly due to the low ratio of copper(I)‐(1Z,3Z)‐dienolates to copper(I)‐(1Z,3E)‐dienolates. (Z)‐Allylcopper(I) species is proposed as effective intermediates, which may form an equilibrium with copper(I)‐(1Z,3Z)‐dienolates. Interestingly, the present methodology is a nice complement to our previous report, in which (E)‐β,γ‐unsaturated pyrazoleamides were employed as the prenucleophiles in the copper(I)‐catalyzed asymmetric vinylogous Mannich‐Type reaction and anti‐vinylogous products were obtained. In the previous reaction, copper(I)‐ (1Z,3E)‐dienolates were generated through α‐deprotonation, which might form an equilibrium with (E)‐allylcopper(I) species. Therefore, it is realized in the presence of a copper(I) catalyst that (E)‐α,β‐unsaturated pyrazoleamides lead to syn‐products and (E)‐β,γ‐unsaturated pyrazoleamides lead to anti‐products. Finally, by use of (E)‐β,γ‐unsaturated pyrazoleamide, (E)‐α,β‐unsaturated pyrazoleamide, (R)‐DTBM‐SEGPHOS, and (S)‐DTBM‐SEGPHOS, the stereodivergent synthesis of all four stereoisomers is successfully carried out. Then by following a three‐step reaction sequence, all four stereoisomers of N‐Boc‐2‐Ph‐3‐Me‐piperidine are synthesized in good yields, which potentially serve as common structure units in pharmaceutically active compounds.  相似文献   

3.
Stereoselective synthesis of (Z)‐α‐(hydroxyalkyl)‐β‐iodoacrylates (=(2Z)‐2‐(hydroxyalkyl)‐3‐iodoprop‐2‐enoates) was achieved in a one‐pot coupling reaction from methyl prop‐2‐ynoate, Me3SiI, and an alkanal under mild conditions with MgI2 as catalyst (→ 1 – 9 ; see Table and Scheme 1). Baylis‐Hillman β‐iodo adducts were generated in excellent yields with high (Z)‐selectivity. The conversion of methyl prop‐2‐ynoate to an active methyl 3‐iodo‐1‐[(trimethylsilyl)oxy]allenolate intermediate in situ followed by carbonyl addition is proposed as the reaction sequence (Schemes 1 and 2).  相似文献   

4.
The one‐pot sequential synthesis of (?)‐oseltamivir has been achieved without evaporation or solvent exchange in 36 % yield over seven reactions. The key step was the asymmetric Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide, catalyzed by a diphenylprolinol silyl ether. The use of a bulky O‐silyl‐substituted diphenylprolinol catalyst, chlorobenzene as a solvent, and HCO2H as an acid additive, were key to produce the first Michael adduct in both excellent yield and excellent diastereo‐ and enantioselectivity. Investigation into the effect of acid demonstrated that an acid additive accelerates not only the EZ isomerization of the enamines derived from pentan‐3‐yloxyacetaldehyde with diphenylprolinol silyl ether, but also ring opening of the cyclobutane intermediate and the addition reaction of the enamine to (Z)‐N‐2‐nitroethenylacetamide. The transition‐state model for the Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide was proposed by consideration of the absolute configuration of the major and minor isomers of the Michael product with the results of the Michael reaction of pentan‐3‐yloxyacetaldehyde with phenylmaleimide and naphthoquinone.  相似文献   

5.
Bis((Z)‐5‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole‐4‐yl)monosulfane ( 6 ), a molecule consisting of two diphenyldithiafulvene units connected by a sulfur bridge, was synthesized by the selective lithiation of (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole ( 7a ) at the endocyclic double bond and by subsequent reaction of the lithiated intermediate with bis(phenylsulfonyl)sulfane. Since this reaction sequence proceeded with retention of configuration, of three possible isomers (E, E, Z, E, and Z, Z) only the Z, Z form was obtained. On the basis of the X‐ray structure analysis and the NMR‐spectroscopic characterization of 6 supplemented by the NMR parameters of (E)‐ and (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole, it was demonstrated that two characteristic 5J coupling constants of the proton at the exocyclic double bond indicate the configuration (Z or E) of disubstituted dithiafuvene derivatives.  相似文献   

6.
Cucurbitaxanthin A (=(all‐E,3S,5R,6R,3′R)‐3,6‐epoxy‐5,6‐dihydro‐β,β‐carotene‐5,3′‐diol; 1 ) was submitted to thermal isomerization and to I2‐catalysed photoisomerization. The structure of the main reaction products (9Z)‐ ( 2 ), (9′Z)‐ ( 3 ), (13Z)‐ ( 4 ), and (13′Z)‐cucurbitaxanthin A ( 5 ) was determined by their UV/VIS, CD, 1H‐NMR, and mass spectra.  相似文献   

7.
The efficient and highly stereoselective syntheses of a variety of (Z)‐configured, substituted α‐(hydroxymethyl) ‐ β‐iodo‐acrylates from prop‐2‐ynoate and various aldehydes was achieved. The synthetic protocol involves a simple one‐pot coupling reaction under mild conditions, promoted by MgI2, which serves both as a Lewis acid and iodine source for a Baylis? Hillman‐type reaction. All adducts were generated in good‐to‐excellent yields, the (Z)‐isomers being formed in high selectivity (>98%). The conversion of methyl prop‐2‐ynoate into an active ‘β‐iodo allenolate’ intermediate, which then nucleophilically attacks an aldehyde, is proposed as a plausible reaction mechanism.  相似文献   

8.
The thermal reaction of homoazulene (=bicyclo[5.3.1]undeca‐1,3,5,7,9‐pentaene; 2 ) with dimethyl acetylenedicarboxylate (ADM) in 1,2‐dichloroethane (ClCH2CH2Cl) results, in contrast to an earlier report [5], in formation of not only dimethyl homoheptalene‐4,5‐dicarboxylate (=bicyclo[5.5.1]trideca‐1,3,5,7,9,11‐hexaene‐4,5‐dicarboxylate; 3 ), but also of a 4 : 1 mixture of 3 and dimethyl homoheptalene‐2,3‐dicarboxylate ( 13 ) in almost quantitative yield (Schemes 1 and 3). The structures of both homoheptalenes have been corroborated by X‐ray crystal‐structure analysis (Fig. 5). The double‐bond‐shifted (DBS) isomers 3 ′ and 13 ′ of 3 and 13 , respectively, could not be detected in their 1H‐NMR spectra (600 MHz threshold of detection ≥0.5%), in agreement with the AM1‐calculated ΔH values of the four isomeric homoheptalene‐dicarboxylates (cf. Table 4). Vilsmeyer formylation of homoazulene ( 2 ) gave homoazulene‐8‐carbaldehyde ( 14 ) in a yield of 67%, which, on treatment with benzylidene‐(triphenyl)‐λ5‐phosphane, gave, in almost quantitative yield, a 1.6 : 1 mixture of (Z)‐ and (E)‐8‐styrylhomoazulene ((Z)‐ 15 and (E)‐ 15 , resp.). Thermal reaction of the latter mixture with ADM in 1,2‐dichloroethane led, in a yield of 42%, to a 5 : 1 mixture of dimethyl (Z)‐ and (E)‐2‐styrylhomoheptalene‐4,5‐dicarboxylate ((Z)‐ 15 and (E)‐ 16 , resp.). Both isomers were separated by column chromatography on silica gel. Again, the DBS isomers of (Z)‐ 16 and (E)‐ 16 , i.e., (Z)‐ 16 ′ and (E)‐ 16 ′, could not be detected in the 1H‐NMR spectra (600 MHz) of pure (Z)‐ 16 and (E)‐ 16 .  相似文献   

9.
The reaction of 2,2‐oxydiethanethiol and 2‐[2‐mercaptoethyl) thio] ethanethiol with dichloroglyoxime (DCGO) in absolute EtOH led to crown compounds, oxadithia (5Z,6Z)‐1,4,7‐oxadithiadiononane‐5,6‐dionedioxime (1) and trithia (2Z,3Z)‐1,4,7‐trithionane‐2,3‐dionedioxime (2), respectively. The compounds 5,6,8,9‐tetrahydro [1,4,7]oxadithionine[5,6‐c][1,2,5]oxadiazole (3) and 5,6,8,9‐tetrahydro[1,4,7]trithionino[2,3‐c][1,2,5]oxadiazole (4) were prepared by dehydration of 1 and 2 in aqueous solution of potassium hydroxide at 170–180°C, respectively.  相似文献   

10.
Macrolide lactones, the so called cucujolides derived from unsaturated fatty acids, are aggregation pheromones of cucujid grain beetles. Thirty years ago, Oehlschlarger et al. showed that (3Z,6Z)‐dodeca‐3,6‐dien‐11‐olide ( 4 ) and the respective 12‐olide ( 7 ) attract the sawtoothed grain beetle Oryzaephilus surinamensis, whereas (5Z,8Z,13R)‐tetradeca‐5,8‐dien‐13‐olide ( 5 ) increases the response synergistically. The frass of this beetle is attractive for its parasitoid Cephalonomia tarsalis, which potentially can be used for pest control. A GC/MS analysis of attractive frass showed the presence of 5 , together with an unknown isomer. Cucujolide V was tentatively identified also in the femoral glands, pheromone‐releasing structures, of the Madagascan mantelline frog Spinomantis aglavei. Therefore, a new route to synthesize doubly unsaturated macrolides allowing the flexible attachment of the side chain was developed. A straightforward method to obtain Z configured macrolides involves ring‐closing alkyne metathesis (RCAM) followed by Lindlar‐catalyzed hydrogenation. This methodology was extended to homoconjugated diene macrolides by using RCAM after introduction of one Z configured double bond in the precursor by Wittig reaction. A tungsten benzylidyne complex was used as the catalyst in the RCAM reaction, which afforded the products in high yield at room temperature. With the synthetic material at hand, the unknown isomer was identified as the new natural product (5Z,8Z,12R)‐tetradeca‐5,8‐dien‐12‐olide, cucujolide X ( 8 ). Furthermore, the route also allowed the synthesis of cucujolide V in good yield. The natural products were identified by the synthesis of enantiomerically pure or enriched material and gas chromatography on chiral phases. The new macrolide (R)‐ 8 proved to be biologically active, attracting female O. surinamensis, but no males. The synthetic material allowed the identification of (R)‐ 5 in both the beetle and the frog.  相似文献   

11.
A proton‐coupled electron transfer (PCET) process plays an important role in the initial step of lipoxygenases to produce lipid radicals which can be oxygenated by reaction with O2 to yield the hydroperoxides stereoselectively. The EPR spectroscopic detection of free lipid radicals and the oxygenated radicals (peroxyl radicals) together with the analysis of the EPR spectra has revealed the origin of the stereo‐ and regiochemistry of the reaction between O2 and linoleyl (= (2Z)‐10‐carboxy‐1‐[(1Z)‐hept‐1‐enyl]dec‐2‐enyl) radical in lipoxygenases. The direct determination of the absolute rates of H‐atom‐transfer reactions from a series of unsaturated fatty acids to the cumylperoxyl (= (1‐methyl‐1‐phenylethyl)dioxy) radical by use of time‐resolved EPR at low temperatures together with detailed kinetic investigations on both photoinduced and thermal electron‐transfer oxidation of unsaturated fatty acids provides the solid energetic basis for the postulated PCET process in lipoxygenases. A strong interaction between linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) and the reactive center of the lipoxygenases (FeIII? OH) is suggested to be involved to make a PCET process to occur efficiently, when an inner‐sphere electron transfer from linoleic acid to the FeIII state is strongly coupled with the proton transfer to the OH group.  相似文献   

12.
A novel series of (9Z)‐9‐arylmethylidene‐3‐(2,6‐dichlorophenyl)‐5,6‐dihydro[1,3]thiazolo[2′,3′:2,3]imidazo [1,2‐d][1,2,4]oxadiazol‐8(9H)‐one derivatives were prepared in moderate yields by the 1,3‐dipolar cycloaddition reaction of a nitrile oxide with (2Z)‐2‐arylmethylidene‐5,6‐dihydroimidazo [2,1‐b][1,3]thiazol‐3(2H)‐ones. The reaction site of the dipolarphile is the C═N of imidazo[2,1‐b][1,3]thiazole rather than the expected C═C of the arylmethylidene. The product structures were characterized thoroughly by IR, MS, NMR spectroscopy, and elemental analysis. The results indicate that this reaction proceeds with chemoselectivity and regioselectivity.  相似文献   

13.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The total synthesis of bistramide A and its 36(Z),39(S) and 36(Z),39(R) isomers shows that these compounds have different effects on cell division and apoptosis. The synthesis relies on a novel enol ether‐forming reaction for the spiroketal fragment, a kinetic oxa‐Michael cyclization reaction for the tetrahydropyran fragment, and an asymmetric crotonylation reaction for the amino acid fragment. Preliminary biological studies show a distinct pattern of influence of each of the three compounds on cell division, differentiation, and apoptosis in HL‐60 cells, thus suggesting that these effects are independent activities of the natural product.  相似文献   

15.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
(E)‐ and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile ((E)‐ and (Z)‐BTE, resp., =(E)‐ and (Z)‐2,3‐bis(trifluoromethyl)but‐2‐enedinitrile) were used as a stereochemical probe in studying (2+2) cycloadditions of acceptor with donor alkenes. The additions to methyl (E)‐ and (Z)‐propenyl ether gave rise to the eight conceivable cyclobutanes 8 , although in different ratios in reactions of (E)‐ and (Z)‐BTE. The 19F‐NMR data served the structural assignment and the quantitative analysis. The mechanistic discussion is based on rotations and ring closures of the assumed 1,4‐zwitterionic intermediates. Dimethylketene dimethyl acetal, methylketene dimethyl acetal, and ketene diethyl acetal show an increasing rate in their reactions with BTE as well as in the equilibration of the cycloadducts.  相似文献   

17.
The use of dimethyldioxirane (DMD) as the epoxidizing agent for polyunsaturated fatty acids was investigated. With fatty acid methyl esters, this is a convenient method for avoiding acidic conditions, using different solvents, and simplifying the isolation procedures, with less contamination due to by‐products. The reagent was also tested with free fatty acids in water. In this case, the supramolecular organization of fatty acids influenced the reaction outcome, and the epoxidation showed interesting regioselective features. The C?C bonds closest to the aqueous‐micelle interface is the most favored for the interaction with dimethyldioxirane. The preferential epoxidation of linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) to the 9,10‐monoepoxy derivative was achieved, with a high yield and 65% regioselectivity. In case of arachidonic acid (= (5Z,8Z,11Z,14Z)‐eicosa‐5,8,11,14‐tetraenoic acid) micelles, the regioselective outcome with formation of the four possible monoepoxy isomers was studied under different conditions. It resulted to be a convenient synthesis of ‘cis‐5,6‐epoxyeicosatrienoic acid’ (= 3‐[(2Z,5Z,8Z)‐tetradeca‐2,5,8‐trienyl]oxiran‐2‐butanoic acid), whereas in reverse micelles, epoxidation mostly gave ‘cis‐14,15‐epoxyeicosatrienoic acid (= (5Z,8Z,11Z)‐13‐(3‐pentyloxiran‐2‐yl)trideca‐5,8,11‐trienoic acid).  相似文献   

18.
Diepoxy[18]annulenes(10.0): ( Z , E , Z , E , Z )‐Diepoxy[18]annulene(10.0) – a Highly Dynamic Annulene The McMurry reaction of (all‐E)‐5,5′‐([2,2′‐bifuran]‐5,5′‐diyl)bis[penta‐2,4‐dienal] ( 13 ) only occurs intramolecularly to give a mixture of the diepoxy[18]annulenes(10.0) 6 and 7 . Tetraepoxy[36]annulene(10.0.10.0) resulting from an intermolecular McMurry reaction is not formed. According to spectroscopic data, 6 is (Z,E,Z,E,Z)‐ and 7 (Z,E,E,Z,E)‐configured. The 1H‐NMR data confirm that in 6 the (E)‐ethene‐1,2‐diyl bonds (C(11)=C(12) and C(15)=C(16)) rotate around the adjacent σ‐bonds. Beginning at −70°, this rotation freezes, and 6 is becoming a diatropic aromatic ring system. Beside [18]annulene itself, (Z,E,Z,E,Z)‐diepoxy[18]annulene(10.0) 6 is the only hitherto known [18]annulene derivative with dynamic properties.  相似文献   

19.
The late transition metal catalyzed rearrangement of propargyl acetates offers an interesting platform for the development of synthetically useful transformations. We have recently shown that gold complexes can catalyze a highly selective tandem 1,2‐/1,2‐bis‐acetoxy migration in 1,4‐bis‐propargyl acetates to form 2,3‐bis‐acetoxy‐1,3‐dienes. In this way, (1Z,3Z)‐ or (1Z,3E)‐ and (1E,3Z)‐1,3‐dienes could be obtained in a stereocontrolled manner depending on the electronic and steric features of the ancillary ligand bound to gold and the substituents at the propargylic positions. In this work, we report an experimental study on the scope of this transformation, plus a detailed theoretical examination of the reaction mechanism, which has revealed the key features responsible for the reaction stereoselectivity. Synthetic applications towards the one‐pot synthesis of quinoxaline heterocycles and tandem Diels–Alder processes have also been devised.  相似文献   

20.
A highly regio‐, diastereo‐ and enantioselective Michael addition–alkylation reaction between α‐substituted cyano ketones and (Z)‐bromonitrostyrenes has been realized by using a chiral N,N′‐dioxide as organocatalyst. A variety of substrates performed well in this reaction, and the corresponding multifunctionalized chiral 2,3‐dihydrofurans were obtained in up to 95 % yield with 95:5 dr and 93 % ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号