首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vesicles form spontaneously in a aqueous mixture of sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT) and lauryl sulfonate betaine (LSB). Different from catanionic vesicles, the formation or disaggregation of such zwitterionic/anionic vesicles may be easily controlled by adjusting the relative amount of LSB and salinity. The participation of LSB reduces the polydispersity of the vesicles and even results in the formation of monodispersed vesicles at a certain salinity. But as LSB exceeds a certain proportion, vesicles cannot form at any concentration and salinity, making convenient the study of the structural transitions. We applied pyrene as a fluorescence probe and monitored the transition among the monomer, micelle, and vesicle through the variation of I(1)/I(3), accompanied by conductivity and turbidity measurements. In LSB solution and LSB-rich mixture, an abrupt change of the ratio of I(1)/I(3) was found in the transition from monomer to micelle with increasing concentration, as well as in the transition from micelle to vesicle with increasing salinity, which shows that a difference of the polarity of the microenvironment between the micelle and the vesicle bilayer resulted from the composition change. But in AOT solution and AOT-rich mixture, only a gradual change in the transition is observed due to the existence of intermediate structures, which have different microenvironments from micelles and vesicles. So the formation of vesicle experiences a process of monomer to premicelle to micelle to bilayer segment with increasing concentration by combining the conductivity method. The ratio of I(1)/I(3) is independent of the vesicle size once formed.  相似文献   

2.
The encapsulation of DNA by catanionic vesicles has been investigated; the vesicles are composed of one cationic surfactant, in excess, and one anionic. Since cationic systems are often toxic, we introduced a novel divalent cationic amino-acid-based amphiphile, which may enhance transfection and appears to be nontoxic, in our catanionic vesicle mixtures. The cationic amphiphile is arginine-N-lauroyl amide dihydrochloride (ALA), while the anionic one is sodium cetylsulfate (SCS). Vesicles formed spontaneously in aqueous mixtures of the two surfactants and were characterized with respect to internal structure and size by cryogenic transmission electron microscopy (cryo-TEM); the vesicles are markedly polydisperse. The results are compared with a study of an analogous system based on a short-chained anionic surfactant, sodium octylsulfate (SOS). Addition of DNA to catanionic vesicles resulted in associative phase separation at very low DNA concentrations; there is a separation into a precipitate and a supernatant solution; the latter is first bluish but becomes clearer as more DNA is added. From studies using cryo-TEM and small angle X-ray scattering (SAXS) it is demonstrated that there is a lamellar structure with DNA arranged between the amphiphile bilayers. Comparing the SOS containing DNA-vesicle complexes with the SCS ones, an increase in the repeat distance is perceived for SCS. Regarding the phase-separating DNA-amphiphile particles, cryo-TEM demonstrates a large and nonmonotonic variation of particle size as the DNA-amphiphile ratio is varied, with the largest particles obtained in the vicinity of overall charge neutrality. No major differences in phase behavior were noticed for the systems here presented as compared with those based on classical cationic surfactants. However, the prospect of using these systems in real biological applications offers a great advantage.  相似文献   

3.
Dissipative particle dynamics (DPD) simulations are performed to study the factors that lead to the transition between micelle and vesicle in catanionic mixtures composed of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB), with the aim of understanding and controlling the structures of this system. The phase behavior, kinetics of vesicle formation, and micelle–vesicle transitions induced by salt, temperature, and selective solvents are investigated systematically. In this research, phase diagram of SDS/DTAB mixture is constructed by simulations at different concentrations and composition fractions. It is consistent with experimental results. The kinetic process of catanionic vesicle formation is illustrated. It is clarified that the transition between micelle and vesicle can be controlled by properly adjusting the external conditions. More interestingly, the evolution condition and transition mechanism between micelle and vesicle induced by various conditions are revealed. The membrane thickness differences between vesicles formed at different external conditions are compared. Here, the predicted phenomenon is compared with experimental results whenever possible, and we try to make a connection between the simulation model and the reality of the experiments. These studies help to shed light on the microscopic details of micelle–vesicle transition in catanionic mixtures.  相似文献   

4.
In this study, a pseudodouble-chained ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), was prepared from a mixture of cationic surfactant, hexadecyltrimethylammonium bromide, and anionic surfactant, sodium dodecylsulfate. Positively charged catanionic vesicles were then successfully fabricated from HTMA-DS with the addition of cationic surfactants, dialkyldimethylammonium bromide (DXDAB), including ditetradecyldimethylammonium bromide (DTDAB), dihexadecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide (DODAB), with a mechanical disruption approach. The control of charge characteristic and physical stability of the catanionic vesicles through the variations of DXDAB molar fraction and alkyl chain length was then explored by size, zeta potential, and Fourier transform infrared analyses. It was found that the molecular packing and/or molecular interaction of HTMA-DS with DXDAB rather than the electrostatic repulsion between the charged vesicles dominated the physical stability of the mixed HTMA-DS/DXDAB vesicles. The presence of DTDAB, which possesses short alkyl chains, could adjust the packing of the unmatched chains of HTMA+ and DS? and promote the vesicle formation. However, the weak molecular interaction due to the short chains of DTDA+ could not maintain the vesicle structures in long-term storage. With increasing the alkyl chain length of DXDAB, it was possible to improve the vesicle physical stability through the enhanced molecular interaction in the vesicular bilayer. However, the long alkyl chains of DODAB unmatched with those of HTMA-DS, resulting in the vesicle disintegration in long-term storage. For the formation of stable charged catanionic vesicles of HTMA-DS/DXDAB, a good match in hydrophobic chains and strong molecular interaction were preferred for the vesicle-forming molecules.  相似文献   

5.
The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C12/C12, and the other highly asymmetric with 2C8/C16 chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C8/C16 system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy).  相似文献   

6.
An ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-chained cationic surfactant, dimethyldimyristylammonium bromide (DTDAB), could form positively charged catanionic vesicles with a potential application in gene delivery. To improve the gene delivery efficiency, the addition of CaCl2 into cationic liposomal systems has been proposed in the literature. In this study, detrimental effect of calcium chloride on the physical stability of the positively charged HTMA-DS/DTDAB catanionic vesicles was demonstrated by the size and zeta potential analyses of the vesicles. It was noted that the reduced electrostatic interaction between the catanionic vesicles could not fully explain the lowered physical stability of the vesicles in the presence of CaCl2. Apparently, the molecular packing/interaction in the vesicular bilayers played an important role in the vesicle physical stability. To modify the molecular packing/interaction in the vesicular bilayers, cholesterol was adopted as an additive to form catanionic vesicles with HTMA-DS/DTDAB. It was found that the physical stability of the catanionic vesicles was significantly improved with the presence of cholesterol in the vesicular bilayers even in the presence of 50 mM CaCl2. An infrared analysis suggested that with the incorporation of cholesterol into HTMA-DS/DTDAB vesicular bilayers, the alkyl chain motion was enhanced, and the molecular packing became less ordered. The cholesterol-induced fluidic bilayer characteristic allowed the vesicular bilayers to be adjusted to a stable status, resulting in improved physical stability of the catanionic vesicles even in the presence of CaCl2 with a high concentration.  相似文献   

7.
Four ion-pair amphiphiles (IPAs), derived from the pairing of alkyltrimethylammonium chlorides and sodium alkyl sulfates, were used to form catanionic vesicles in water upon the mechanical dispersion method. For the first time in the literature, short-chained alcohols (methanol, ethanol, 1-propanol, and 1-butanol) were added as cosolvents at a variety of concentrations and systematically studied for their effects on the stability of the ensuing vesicles. Dynamic light scattering measurements indicated that vesicles formed from one of the IPAs (i.e., dodecyltrimethylammonium dodecyl sulfate) could be efficiently and successfully stabilized by the addition of appropriate amounts of 1-propanol and 1-butanol. Maximum lifetimes of more than 1 year and 132 days for stable vesicles in 5% 1-butanol and 15% 1-propanol solutions, respectively, were observed, and this demonstrates that a novel method for the stabilization of catanionic vesicles formed from IPAs becomes available by means of cosolvent addition. Furthermore, the stability of catanionic vesicles was found to be strongly dependent on cosolvent concentration. In general, the vesicle stability increased with increasing the cosolvent concentration, reached a maximum at a specific concentration, and thereafter decreased with further increasing the concentration. The vesicles finally disintegrated into constituent molecules in solutions of high cosolvent concentrations. An explanation of cosolvent effects based on the medium dielectric constant was proposed.  相似文献   

8.
Salt-free 1:1 cationic/anionic (catanionic) surfactant mixture tetradecyltrimethylammonium laurate (TTAL) could be prepared by mixing equimolar tetradecyltrimethylammonium hydroxide (TTAOH) and lauric acid (LA) in water. Given the condition of suitable range of weight fraction of TTAL in total surfactant, rho=WTTAL/(WTTAL+WLA), and at existence of a small amount of water, it was found that the mixtures of so-obtained TTAL and LA could spontaneously form stable reverse vesicles in various organic solvents including toluene, tert-butylbenzene, and cyclohexane. The reverse vesicle phase shows a blue color against room light and exhibits strong birefringence under polarized microscope. The reverse vesicles are very sensitive to temperature change. Increasing temperature could make the rho values within which reverse vesicles were constructed move to higher values. In organic solvents of alkanes such as n-heptane, reverse vesicles could still form but become unstable upon time and centrifugation. Increasing temperature could accelerate phase separation, and finally a gel-like bottom phase was usually observed. Interestingly, the stable reverse vesicles formed by so-called salt-free catanionic surfactant mixtures still show some resistance against adding inorganic salts. They can trap inorganic ions such as Zn2+ and S2- into their hydrophilic layers. This opens the door for template applications of reverse vesicles to prepare inorganic nanoparticles.  相似文献   

9.
Vesicles composed of sodium oleate (NaO) and monoolein (MO) are adequate candidates for drug nanoencapsulation and controlled release due to their stability and perceived biocompatibility. The object of the present study is to design hydrogels based on those anionic vesicles and polymers of both non-associative and associative type. The selected macromolecules were k-carrageenan (KC), carboxymethyl cellulose (CMC) and hydrophobically modified carboxymethyl cellulose (HMCMC). While the polymer-vesicle association was probed by rheology, the influence of the polymer on the vesicle stability was monitored by cryo-TEM and calorimetric measurements. The effects of the polymer on the rheological properties of surfactant aggregate solutions clearly depend on the polymer type: the storage moduli of the polymer-vesicle mixtures, compared to the vesicles alone, increases around 2 orders of magnitude if the polymer is non-associative and 4 orders of magnitude if the macromolecule is of associative type. As the vesicles are added, the non-associative polymer networks tend to be disrupted, while the networks formed by associative polymer get more robust. These observations can be explained by fundamental changes in electrostatic/hydrophobic interactions: vesicles entrapped in KC networks convert the polysaccharide in a highly charged entity and favor high electrostatic repulsions between the chains; this encourages network collapse. The opposite picture is experienced in HMCMC systems, i.e., such network is stabilized by the presence of vesicles. This is ascribed to the enhanced hydrophobic association, compensating the electrostatic repulsions between vesicles and polymer chains.  相似文献   

10.
《Comptes Rendus Chimie》2016,19(8):951-954
Surfactants can self-assemble in dilute aqueous solutions into a variety of microstructures, including micelles, vesicles, and bilayers. Recently, there has been an increasing interest in unilamellar vesicles, which are composed of a closed bilayer that separates an inner aqueous compartment from the outer aqueous environment. This interest is motivated by their potential to be applied as vehicles for active agents in drug delivery via several routes of administration. Active drug molecules can be encapsulated in the bilayer membrane if they are lipophilic or in the core of the vesicle if they are hydrophilic. Furthermore vesicles formed by mixing of cationic and anionic surfactants (so called ‘catanionic’ systems) can be used as models for biological membranes as they have low critical micelle concentration (cmc) and are highly biocompatible. In this work the formation of amino acid based mixed surfactant vesicles and their stabilization and biocompatibility were studied systematically using several instrumental techniques.  相似文献   

11.
The aggregation behaviors of the cationic and anionic (catanionic) surfactant vesicles formed by didodecyldimethylammonium bromide (DDAB)/sodium bis(2-ethylhexyl) phosphate (NaDEHP) in the absence and presence of a negatively charged polyelectrolyte are investigated. The amount of the charge on the vesicle can be tuned by controlling the DDAB/NaDEHP surfactant molar ratio. The charged vesicular dispersions made of DDAB/NaDEHP are mixed with a negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on the polyelectrolyte/vesicle charge ratio, complex flocculation or precipitation occurs. Characterization of the catanionic vesicles and the complexes are performed by transmission electron microscope (TEM), Cryo-TEM, dynamic light scattering (DLS), conductivity, turbidity, zeta potential, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS) measurements.  相似文献   

12.
Poly(lactide-co-glycolide) (PLGA)-laponite-F68 nanocomposite (PNC) vesicles were prepared through a technically facile, single-step water/oil/water double-emulsion method using ethyl acetate/water mixture. Vesicles of diameter 100 nm to 1.2 μm and average membrane thickness 30 nm were produced. Encapsulation with chemotherapeutic drug doxorubicin revealed unilamellar nature of the vesicle wall. PNC exhibited exfoliated morphology, enhanced thermal stability over neat PLGA, and a glass transition temperature of 54.29 °C. The zeta potential of -14.1 ± 0.231 for the vesicles revealed that the negatively charged PLGA surface is covered with neutral F68 in the vesicle wall. F68-Assisted formation of water/oil/water double emulsion of PNC in ethyl acetate/water mixture is proposed for the formation of the vesicles. Release characteristics of doxorubicin in phosphate-buffered saline (pH 7.4), cytotoxicity of bare and drug-loaded PNC vesicles with L929 cells, and uptake of doxorubicin with C6 fibroblast glioma cell line were also investigated.  相似文献   

13.
A new sugar-derived tricatenar catanionic surfactant (TriCat) was developed to obtain stable vesicles that could be exploited for drug encapsulation. The presence of the sugar moiety led to the formation of highly hydrophilic stoichiometric catanionic surfactant systems. The three hydrophobic chains permitted vesicles to form spontaneously. The self-assembly properties (morphology, size, and stability) of TriCat were examined in water and in buffer solution. Encapsulation studies of a hydrophilic probe, arbutin, commonly used in cosmetics for its whitening properties, were performed to check the impermeability of the vesicle bilayer. The enhancement of hydrophobic forces by the three chains of TriCat prevented surfactant equilibrium between the bilayer and the solution and enabled the probe to be retained in the aqueous cavity of the vesicles for at least 30 h. Thus, the present study suggests that this tricatenar catanionic surfactant could be a promising delivery system for hydrophilic drugs.  相似文献   

14.
We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22, 6461) with vesicles formed from cetyl trimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS), we showed that CTAT-rich (cationic) vesicles could capture the anionic solute carboxyfluorescein with high efficiency (22%) and that the solute was retained by the vesicles for very long times (t1/2 = 84 days). Here we expand on these findings by investigating the interactions of both anionic and cationic solutes, including the chemotherapeutic agent doxorubicin, with both CTAT-rich and SDBS-rich vesicles. The ability of these vesicles to capture and hold dyes is extremely efficient (>20%) when the excess charge of the vesicle bilayer is opposite that of the solute (i.e., for anionic solutes in CTAT-rich vesicles and for cationic solutes in SDBS-rich vesicles). This charge-dependent effect is strong enough to enable the use of vesicles to selectively capture and separate an oppositely charged solute from a mixture of solutes. Our results suggest that catanionic surfactant vesicles could be useful for a variety of separation and drug delivery applications because of their unique properties and long-term stability.  相似文献   

15.
Mixed vesicles can be formed spontaneously from aqueous mixture of the double‐tailed anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) and the nonionic surfactant octylphenoxypolyethoxyethanol (Triton X‐100) under the inducement of salt, the formation mechanism of which should be attributed to the compression of salt on the electric bilayers of the head groups. The stability and the polydispersity of the vesicles are superior to single‐component AOT vesicles, which can be proved by the TEM image and visual observation. The vesicle region was presented in a pseudo‐ternary diagram of AOT/TX‐100/brine. The size of the vesicle was measured using dynamic light scattering. It is found that the vesicle size increases with the salinity but decreases with the content of TX‐100 in the mixture at the same salinity. Especially, the vesicle size is independent of the surfactant concentration at fixed salinity.  相似文献   

16.
Synthetic vesicles are formed by cationic and anionic surfactants, didodecyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS). The morphology, size, and aqueous properties of cationic/anionic mixtures are investigated at various molar ratios between cationic and anionic surfactants. The charged vesicular dispersions made of DDAB/SDS are contacted or mixed with negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on DDAB/SDS molar ratio or PSSAMA/vesicle charge ratio, complexes flocculation or precipitation occur. Characterization of the cationic/anionic vesicles or complexes formed by the catanionic vesicles and polyelectrolytes is performed by transmission electron microscope (TEM), dynamic light scattering (DLS), conductivity, turbidity, and zeta potential measurements. The size, stability, and the surface charge on the mixed cationic/anionic vesicles or complexes are determined.  相似文献   

17.
Viscoelastic vesicle gels were prepared by mixing a nonionic surfactant, tetraethylene glycol monododecyl ether (C12EO4), and an anionic dye, sodium 4‐phenylazobenzoic acid (AzoNa). The gels, which were composed of multilamellar vesicles, were analyzed by cryogenic transmission electron microscopy (cryo‐TEM), freeze–fracture transmission electron microscopy (FF‐TEM), 2H NMR spectroscopy, and small‐angle X‐ray scattering (SAXS). The mechanism of vesicle‐gel formation is explained by the influence of anionic molecules on the bilayer bending modulus. Interestingly, the vesicle gels were observed to be sensitive to temperature, pH, and light. The viscoelastic vesicle gels respond to heat; they thin at lower temperatures and become thicker at higher temperatures. The vesicle gels are only stable from pH 7 to 11, and the gels become thinner outside of this range. UV light can also trigger a structural phase transition from micelles to multilamellar vesicle gels.  相似文献   

18.
The aqueous self-assembly of a novel lysine-derived surfactant with a gemini-like architecture, designated here as 12-Lys-12, has been experimentally investigated for the amphiphile alone in water and in a mixture with dodecyltrimethylammonium bromide (DTAB). The neat surfactant forms interesting micrometer-sized rigid tubules in the dilute region, resulting in very viscous solutions. For the catanionic mixture with DTAB, various single and multiphase regions were identified (up to a total surfactant concentration of 1.5 wt %) by means of combined polarizing light microscopy, cryo-TEM, and NMR. In the DTAB-rich side, for a mixing molar ratio in the range 2 < DTAB/12-Lys-12 < 4, a region of stable, unilamellar vesicles can be found. Furthermore, it was found that upon addition of 12-Lys-12 to pure DTAB solutions, the mixed micelles grow and beyond a given mixing ratio, vesicles assemble and coexist with small micelles. The transition is not continuous, since there is a narrow mixing range where phase separation occurs. Self-diffusion measurements and cryo-TEM imaging show that the average vesicle radius is on the order of 30-40 nm.  相似文献   

19.
The structure and dynamics of a catanionic vesicle are studied by means of femtosecond up‐conversion and dynamic light scattering (DLS). The catanionic vesicle is composed of dodecyl‐trimethyl‐ammonium bromide (DTAB) and sodium dodecyl sulphate (SDS). The DLS data suggest that 90 % of the vesicles have a diameter of about 400 nm, whereas the diameter of the other 10 % is about 50 nm. The dynamics in the catanionic vesicle are compared with those in pure SDS and DTAB micelles. We also study the dynamics in different regions of the micelle/vesicle by varying the excitation wavelength (λex) from 375 to 435 nm. The catanionic vesicle is found to be more heterogeneous than the SDS or DTAB micelles, and hence, the λex‐dependent variation of the solvation dynamics is more prominent in the first case. The solvation dynamics in the vesicle and the micelles display an ultraslow component (2 and 300 ps, respectively), which arises from the quasibound, confined water inside the micelle, and an ultrafast component (<0.3 ps), which is due to quasifree water at the surface/exposed region. With an increase in λex, the solvation dynamics become faster. This is manifested in a decrease in the total dynamic solvent shift and an increase in the contribution of the ultrafast component (<0.3 ps). At a long λex (435 nm), the surface (exposed region) of a micelle/vesicle is probed, where the solvation dynamics of the water molecules are faster than those in a buried location of the vesicle and the micelles. The time constant of anisotropy decay becomes longer with increasing λex, in both the catanionic vesicle and the ordinary micelles (SDS and DTAB). The slow rotational dynamics (anisotropy decay) in the polar region (at long λex) may be due to the presence of ionic head groups and counter ions.  相似文献   

20.
The spontaneous formation of vesicles by six amino acid‐based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head‐group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self‐aggregation, both aliphatic and aromatic side‐chain‐substituted amino acid‐based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature‐dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan‐ and tyrosine‐based surfactants have the ability to reduce HAuCl4 to gold nanoparticles (GNPs), which is utilized to obtain in‐situ‐synthesized GNPs entrapped in vesicles without the need for any external reducing agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号