首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐alkylisonitrile, a precursor to isonitrile‐containing lipopeptides, is biosynthesized by decarboxylation‐assisted ‐N≡C group (isonitrile) formation by using N‐alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2‐oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four‐electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X‐ray structures of iron‐loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that ‐N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV‐oxo‐catalyzed hydroxylation. It is likely followed by decarboxylation‐assisted desaturation to complete isonitrile installation.  相似文献   

2.
The first enantioselective total synthesis of (+)‐steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh‐catalyzed O?H bond insertion followed by an intramolecular carbonyl‐ene reaction, two sequential SmI2‐mediated Ueno–Stork and ketyl–olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro‐aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)‐steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis.  相似文献   

3.
The bioactive Kopsia alkaloids lundurines A–D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (?)‐lundurine A has previously been achieved through a Simmons–Smith cyclopropanation strategy. Here, the total synthesis of (?)‐lundurine A was carried out using a metal‐catalyzed diazo cyclopropanation strategy. In order to avoid a carbene C?H insertion side reaction during cyclopropanation of α‐diazo‐ carboxylates or cyanides, a one‐pot, copper‐catalyzed Bamford–Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7.  相似文献   

4.
The synthesis of small rings by functionalization of C(sp3)?H bonds remains a great challenge. We report for the first time a copper‐catalyzed [1+1+1] cyclotrimerization of acetophenone derivatives under mild reaction conditions. The reaction has a broad scope for the stereoselective synthesis of cyclopropanes by trimerization of acetophenone. The developed transformation is based on an extraordinary copper‐catalyzed cascade process that allows saturated carbocycles to be obtained for the first time by cyclotrimerization through functionalization of C(sp3)?H bonds. The cascade of sixfold C(sp3)?H bond functionalization allows the synthesis of cyclopropanes in a highly stereoselective approach.  相似文献   

5.
Gold carbene reactivity patterns were accessed by ynamide insertion into a C(sp3) H bond. A substantial increase in molecular complexity occurred through the cascade polycyclization of N‐allyl ynamides to form fused nitrogen‐heterocycle scaffolds. Exquisite selectivity was observed despite several competing pathways in an efficient gold‐catalyzed synthesis of densely functionalized C(sp3)‐rich polycycles and a copper‐catalyzed synthesis of fused pyridine derivatives. The respective gold–keteniminium and ketenimine activation pathways have been explored through a structure–reactivity study, and isotopic labeling identified turnover‐limiting C H bond‐cleavage in both processes.  相似文献   

6.
Gold carbene reactivity patterns were accessed by ynamide insertion into a C(sp3)? H bond. A substantial increase in molecular complexity occurred through the cascade polycyclization of N‐allyl ynamides to form fused nitrogen‐heterocycle scaffolds. Exquisite selectivity was observed despite several competing pathways in an efficient gold‐catalyzed synthesis of densely functionalized C(sp3)‐rich polycycles and a copper‐catalyzed synthesis of fused pyridine derivatives. The respective gold–keteniminium and ketenimine activation pathways have been explored through a structure–reactivity study, and isotopic labeling identified turnover‐limiting C? H bond‐cleavage in both processes.  相似文献   

7.
A bimetal‐catalyzed cascade reaction for the synthesis of N‐isopropenyl 1,2,3‐triazoles in high yield is reported. This reaction involves the generation of 2‐azidopropenes in situ by C(sp3)‐OAr bond cleavage for click reaction and features a broad substrate scope, good functional group tolerance and readily available substrates.  相似文献   

8.
An unprecedented CuI–pybox‐diPh‐catalyzed highly enantioselective (up to >99 % ee) alkynylation/lactamization cascade has been developed as a general catalytic system for the synthesis of diversely substituted isoindolinones of immense biological importance. The cascade effects one C? C and two C? N bond‐forming events in one reaction vessel under operationally simple, additive‐free reaction conditions in good to excellent yields. The methodology was further extended to the synthesis of tetrahydroisoquinoline scaffolds common to several biologically active natural products in a two‐step sequence with remarkable selectivity (up to 94 % ee).  相似文献   

9.
The twofold hydroboration products of (Fmes)BH2?SMe2 with a series of alkynes (2‐butyne, arylethynes) react with two molar equiv of 2,6‐dimethylphenyl isocyanide (CN‐Xyl) at 80 °C to give rare examples of 1,3‐azaborinine derivatives. A mechanistic study revealed a reaction course involving insertion of one isonitrile followed by a bora‐Nazarov type ring‐closure reaction and subsequent isonitrile insertion to give the respective 1,3‐dihydro‐1,3‐azaborinines 5 .  相似文献   

10.
N-alkylisonitrile, a precursor to isonitrile-containing lipopeptides, is biosynthesized by decarboxylation-assisted -N≡C group (isonitrile) formation by using N-alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2-oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four-electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X-ray structures of iron-loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that -N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV-oxo-catalyzed hydroxylation. It is likely followed by decarboxylation-assisted desaturation to complete isonitrile installation.  相似文献   

11.
In this account, we provide a brief summary of recent developments in ruthenium‐catalyzed metathesis cascade reactions towards the total synthesis of natural products. We also highlight recent progress from our own laboratory regarding the synthesis of securinega alkaloids and humulanolides, which has resulted in the development of novel ruthenium‐catalyzed metathesis cascade reactions. Inspired and guided by the pioneering and elegant research conducted in this area, we developed a regio‐controlled relay dienyne metathesis cascade reaction and a cyclobutene‐promoted RCM/ROM/RCM cascade reaction for the synthesis of securinega alkaloids and humulanolides, respectively.  相似文献   

12.
An efficient Cp*CoIII‐catalyzed C8‐dienylation of quinoline‐N‐oxides was achieved by employing allenes bearing leaving groups at the α‐position as the dienylating agents. The reaction proceeds by CoIII‐catalyzed C?H activation of quinoline‐N‐oxides and regioselective migratory insertion of the allene followed by a β‐oxy elimination, leading to overall dienylation. Site‐selective C?H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional‐group tolerance. C8‐alkenylation of quinoline‐N‐oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram‐scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.  相似文献   

13.
The final phase for the total synthesis of (±)‐schindilactone A ( 1 ) is described herein. Two independent synthetic approaches were developed that featured Pd–thiourea‐catalyzed cascade carbonylative annulation reactions to construct intermediate 3 and a RCM reaction to make intermediate 4 . Other important steps that enabled the completion of the synthesis included: 1) A Ag‐mediated ring‐expansion reaction to form vinyl bromide 17 from dibromocyclopropane 30 ; 2) a Pd‐catalyzed coupling reaction of vinyl bromide 17 with a copper enolate to synthesize ketoester 16 ; 3) a RCM reaction to generate oxabicyclononenol 10 from diene 11 ; 4) a cyclopentenone fragment in substrate 8 was constructed through a Co–thiourea‐catalyzed Pauson–Khand reaction (PKR); 5) a Dieckmann‐type condensation to successfully form the A ring of schindilactone A ( 1 ). The chemistry developed for the total synthesis of schindilactone A ( 1 ) will shed light on the synthesis of other family members of schindilactone A.  相似文献   

14.
The first total synthesis of amino sugar antibiotic glycocinnasperimicin D ( 1 ) has been achieved by a convergent, three‐component coupling strategy. The key steps involve the Heck–Mizoroki reaction by using the iodophenyl glycoside 50 and acryl amide 32 to furnish the right core structure of 1 , and the construction of the urea glycoside employing the reaction of glycosyl isocyanate 8 with amino sugar 9 . Glycosyl isocyanate 8 was prepared by the oxidation of isonitrile 10 , which displayed excellent reactivity in the coupling event. Synthetic roadblocks, encountered during this synthetic effort, have led to the development of the α‐selective, Lewis acid catalyzed phenyl glycosylation process with 2‐amino‐hexopyranose and a procedure for acetonide deprotection without affecting the silyl ethers.  相似文献   

15.
报道了钯催化下炔丙醇与叔丁基异腈反应高选择性合成吡咯并呋喃衍生物和氨基甲酸酯的新方法.在10%(摩尔分数)Pd(OAc)2与110%(摩尔分数)LiBr存在下,一分子炔丙醇与三分子叔丁基异腈在水的参与下发生“有序的”异腈三重插入反应,以56%~73%的产率高选择性地生成了吡咯并呋喃衍生物;而在10%(摩尔分数)Pd(PPh3)4和110%(摩尔分数)K3PO4存在下,一分子炔丙醇与一分子叔丁基异腈在空气中氧气的参与下发生简单氧化偶联反应,以51%~74%的产率生成了氨基甲酸酯.该方法仅通过简单改变钯催化剂与盐的种类就能得到不同产物,且反应选择性高,分别为吡咯并呋喃亚胺衍生物和氨基甲酸酯提供了有吸引力的合成途径.  相似文献   

16.
A Cu‐catalyzed cascade oxidative radical process of β‐keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β‐keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C?S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four‐coordinated CuII intermediate, O?O bond homolysis induced C?S bond cleavage and Cu‐catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C?S bond cleavage and transformations.  相似文献   

17.
This study demonstrates the first zeolite‐catalyzed synthesis of piperidine derivatives, including peptidomimetics and indoloquinolizidine alkaloids. The approach developed utilizes a highly effective one‐pot reaction cascade, through imine formation and imino‐Diels–Alder reactions, promoted by scandium‐loaded zeolites as a heterogeneous catalyst. The methodology described benefits from very low catalyst loadings (≤5 mol % of ScIII), commercially and readily available starting materials, and mild reaction conditions. Furthermore, the ScIII‐zeolite catalyst can be readily reused more than 10 times without any loss in efficiency.  相似文献   

18.
In this article, we describe our efforts on the total synthesis of bolivianine ( 1 ) and isobolivianine ( 2 ), involving the synthesis of onoseriolide ( 3 ). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine ( 1 ), onoseriolide ( 3 ), and β‐(E)‐ocimene ( 8 ), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)‐verbenone in 14 steps. The improved total synthesis features an unprecedented palladium‐catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels–Alder/intramolecular hetero‐Diels–Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio‐ and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations.  相似文献   

19.
An efficient multicomponent reaction for the synthesis of stereoenriched cyclopentyl‐isoxazoles from camphor‐derived α‐oximes, alkynes, and MeOH is reported. Our method involved a series of cascade transformations, including the in situ generation of an IIII catalyst, which catalyzed the addition of MeOH to a sterically hindered ketone. Oxidation of the oxime, and rearrangement of the α‐hydroxyiminium ion generated a nitrile oxide in situ, which, upon [3+2] cycloaddition reaction with an alkyne, delivered the regioselective product. This reaction was very selective for the syn‐oxime. This multicomponent approach was also extended to the synthesis of a new glycoconjugate, camphoric ester‐isoxazole C‐galactoside.  相似文献   

20.
The mechanism of the nitrene‐group transfer reaction from an organic azide to isonitrile catalyzed by a ZrIV d0 complex carrying a redox‐active ligand was studied by using quantum chemical molecular‐modeling methods. The key step of the reaction involves the two‐electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox‐active bis(2‐iso‐propylamido‐4‐methoxyphenyl)‐amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron‐transfer process by first recruiting the electrons from the redox‐active ligand and becoming formally reduced in the process, followed by a classical metal‐based reduction of the azide reactant. 2) Alternatively, a non‐classical, direct ligand‐to‐ligand charge‐transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non‐classical ligand‐to‐ligand charge‐transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand‐to‐ligand charge‐transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号