首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

2.
The known solid‐state structure (Fig. 1, top) of cyclo(β‐HAla)4 was used to model the structure of the title compound 1 as a prospective somatostatin mimic (Fig. 1, bottom). The synthesis started with the N‐protected natural amino acids Boc‐Phe‐OH, Boc‐Trp‐OH, Boc‐Lys(2‐Cl‐Z)‐OH, and Boc‐Thr(OBn)‐OH, which were homologated to the corresponding β‐amino‐acid derivatives (Scheme 1) and coupled to the β‐tetrapeptide Boc‐β‐HTrp‐β‐HPhe‐β‐HThr(OBn)‐β‐HLys(2‐Cl‐Z)‐OMe ( 16 ); the (N‐Me)‐β‐HThr‐(N‐Me)‐β‐HPhe analog 17 was also prepared. C‐ and N‐terminal deprotection and cyclization through the pentafluorophenyl ester gave the insoluble β‐tetrapeptide with protected Thr and Lys side chains ( 18 ). Solubilization and debenzylation could only be effected in LiCl‐containing THF (ca. 10% yield; with ca. 55% recovery). HPLC Purification provided a sample of the title compound 1 , the structure of which, as determined by NMR‐spectroscopy (Fig. 2, left) was drastically different from the `theoretical' model (Fig. 1). There is a transannular H‐bond dividing the macrocyclic 16‐membered ring, thus forming a ten‐ and a twelve‐membered H‐bonded ring, the former mimicking, or actually being superimposable on, an α‐peptidic so‐called β‐turn. Still, the four side chains occupy equatorial positions on the ring, as planned, albeit with somewhat different geometry as compared to the `original'. The cycloβ‐tetrapeptide has micromolar affinities to the human somatostatin receptors (hsst 1 – 5). Thus, we have demonstrated for the first time that it is possible to mimic a natural peptide hormone with a small β‐peptide. Furthermore, we have discovered a simple way to construct the ubiquitous β‐turn motif with β‐peptides (which are known to be stable to mammalian peptidases).  相似文献   

3.
A highly stereoselective and efficient total synthesis of trans‐dihydronarciclasine from a readily available chiral starting material was developed. The synthesis defines two of the five stereogenic centers of the natural product by an amino acid ester–enolate Claisen rearrangement. The other three stereogenic centers are created in a highly stereocontrolled fashion via a six‐ring vinylogous ester intermediate, which is generated from the γ,δ‐unsaturated ester functional group of the Claisen rearrangement product in an efficient three‐step sequence. This concise total synthesis exemplifies the use of a highly regioselective Friedel–Crafts‐type cyclization to form the B ring via an isocyanate intermediate derived from an N‐Boc group, which is superior to the conventional method using an imino triflate intermediate. This same N‐Boc group is employed to give high selectivity in the Claisen rearrangement earlier in the sequence.  相似文献   

4.
α‐Fluorinated β‐amino thioesters were obtained in high yields and stereoselectivities by organocatalyzed addition reactions of α‐fluorinated monothiomalonates (F‐MTMs) to N‐Cbz‐ and N‐Boc‐protected imines. The transformation requires catalyst loadings of only 1 mol % and proceeds under mild reaction conditions. The obtained addition products were readily used for coupling‐reagent‐free peptide synthesis in solution and on solid phase. The α‐fluoro‐β‐(carb)amido moiety showed distinct conformational preferences, as determined by crystal structure and NMR spectroscopic analysis.  相似文献   

5.
In the course of the first of several attempts to elaborate methods for the synthesis of 1‐nitropiperidinoses, lincosamine was transformed into lactam 6 via hemiacetal 1 , lactone 2 , amide 3 , oxo amide 4 , and its cyclic tautomer 5 . Treatment of the N‐Boc‐protected lactam oxime 9 , obtained from lactam 6 , with brominating agents failed to provide the bromonitroso carbamate 10 . The N‐Boc‐protected lactam 13 derived from 6 was reduced to hemiacetal 14 , but the corresponding N‐Boc‐aminooxime did not tautomerise to the C(1)‐hydroxylamine, and nitrone 17 , a potential precursor of the nitropiperidine 12 , was not formed. Oxidation of the anomeric azide 20 with HOF?MeCN failed to provide the expected nitropiperidine 21 . The phosphinimines 22 derived from 20 did not react with O3. In the next approach to 1‐nitropiperidinoses, we treated the N‐Boc‐protected hemiacetal 25 , obtained from the known gluconolactam 23 with N‐benzylhydroxylamine. The resulting nitrone 26 exits in equilibrium with the anomeric N‐benzyl‐glycosylhydroxylamine that was oxidized to the anomeric nitrone 28 . Ozonolysis of 28 led to the hemiacetal 25 , resulting from the desired, highly reactive protected nitropiperidinose 29 , that was evidenced by an IR band at 1561 cm?1. Similarly to the synthesis of nitrone 26 , reaction of the N‐tosyl‐protected hemiacetal 31 with N‐benzylhydroxylamine and oxidation provided the anomeric N‐benzylhydroxylamines 33 via the p‐toluenesulfonamido nitrone 32 . Their oxidation with MnO2 led to the anomeric nitrone 34 . Ozonolysis of 34 as evidenced by 1H‐NMR and ReactIR spectroscopy led to the highly reactive nitropiperidinose 35 . Like 29, 35 was transformed during workup, and only the hemiacetal 31 was isolated. The similarly prepared lincosamine‐derived nitrone 17 was subjected to ReactIR‐monitored ozonolysis that evidenced the formation of the protected nitropiperidinose 12 , but only led to the isolation of 14 . The facile transformation of the nitropiperidinoses to hemiacetals is rationalised by heterolysis of the anomeric C,N bond, recombination of the ion pair, and denitrosation of the resulting anomeric nitrite by a nucleophile. Attempts to convert the 1‐deoxy‐1‐nitropiperidinose 35 to uloses 43 by base‐catalysed Michael additions or Henry reactions were unsuccessful.  相似文献   

6.
A flexible approach to ethyl (3R,4S)-N-Boc-4-amino-3-hydroxy-5-phenylpentanoate (N-Boc-AHPPA-OEt), the γ-amino-β-hydroxy acid moiety of hapalosin is described. The synthetic method features a ring-opening ethanolysis of an activated N-Boc-lactam, which is obtained via a diastereoselective reductive-alkylation of (R)-malimide derivative. The flexibility of the method resides in the introduction of the alkyl side chain by Grignard reagent addition.  相似文献   

7.
8.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
α‐Methyl‐L ‐proline is an α‐substituted analog of proline that has been previously employed to constrain prolyl peptide bonds in a trans conformation. Here, we revisit the cistrans prolyl peptide bond equilibrium in derivatives of α‐methyl‐L ‐proline, such as N‐Boc‐protected α‐methyl‐L ‐proline and the hexapeptide H‐Ala‐Tyr‐αMePro‐Tyr‐Asp‐Val‐OH. In Boc‐α‐methyl‐L ‐proline, we found that both cis and trans conformers were populated, whereas, in the short peptide, only the trans conformer was detected. The energy barrier for the cistrans isomerization in Boc‐α‐methyl‐L ‐proline was determined by line‐shape analysis of NMR spectra obtained at different temperatures and found to be 1.24 kcal/mol (at 298 K) higher than the corresponding value for Boc‐L ‐proline. These findings further illuminate the conformationally constraining properties of α‐methyl‐L ‐proline.  相似文献   

10.
We report a short synthetic route that provides optically active 2‐substituted hexahydro‐1H‐pyrrolizin‐3‐ones in four steps from commercially available Boc (tert‐but(oxy)carbonyl))‐protected proline. Diastereoisomers (−)‐ 11 and (−)‐ 12 were assembled from the proline‐derived aldehyde (−)‐ 8 and ylide 9 via a Wittig reaction and subsequent catalytic hydrogenation (Scheme 3). Cleavage of the Boc protecting group under acidic conditions, followed by intramolecular cyclization, afforded the desired hexahydro‐1H‐pyrrolizinones (−)‐ 1 and (+)‐ 13 . Applying the same protocol to ylide 19 afforded hexahydro‐1H‐pyrrolizinones (−)‐ 25 and (−)‐ 26 (Scheme 5). The absolute configuration of the target compounds was determined by a combination of NMR studies (Figs. 1 and 2) and X‐ray crystallographic analysis (Fig. 3).  相似文献   

11.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

12.
In view of the prominent role of the 1H‐indol‐3‐yl side chain of tryptophan in peptides and proteins, it is important to have the appropriately protected homologs H‐β2 HTrp OH and H‐β3 HTrp OH (Fig.) available for incorporation in β‐peptides. The β2‐HTrp building block is especially important, because β2‐amino acid residues cause β‐peptide chains to fold to the unusual 12/10 helix or to a hairpin turn. The preparation of Fmoc and Z β2‐HTrp(Boc) OH by Curtius degradation (Scheme 1) of a succinic acid derivative is described (Schemes 2–4). To this end, the (S)‐4‐isopropyl‐3‐[(N‐Boc‐indol‐3‐yl)propionyl]‐1,3‐oxazolidin‐2‐one enolate is alkylated with Br CH2CO2Bn (Scheme 3). Subsequent hydrogenolysis, Curtius degradation, and removal of the Evans auxiliary group gives the desired derivatives of (R)‐H β2‐HTrp OH (Scheme 4). Since the (R)‐form of the auxiliary is also available, access to (S)‐β2‐HTrp‐containing β‐peptides is provided as well.  相似文献   

13.
Enantiopure, Boc‐protected alkoxyamines 12 and 13 , derived from the readily available homoallylic alcohols 4 via a reaction that involves either inversion or retention of configuration, undergo a diastereoselective Pd‐catalyzed ring‐closing carbonylative amidation to produce isoxazolidines 16/17 (≤50:1 diastereoisomer ratio (d.r.)) that can be readily converted into the N‐Boc‐protected esters of β‐amino‐δ‐hydroxy acids and their γ‐substituted homologues 37 . The key carbonylative cyclization proceeds through an unusual syn addition of the palladium and the nitrogen nucleophile across the C?C bond ( 19 → 21 ), as revealed by the reaction of 15 , which afforded isoxazolidine 18 with high diastereoselectivity.  相似文献   

14.
The first total synthesis of sphingolipid (2S,3R,4E)‐N2‐octadecanoyl‐4‐tetradecasphingenine ( 1a ), a natural sphingolipid isolated from Bombycis Corpus 101A, and of its styryl analogue 1b was achieved in good overall yield (Schemes 1 and 2). The key step involved the installation with (E) stereoselectivity of a long lipophilic chain or phenyl group on allyl alcohol derivative 3 via a cross‐metathesis reaction (→ 5a or 5b ). The N‐Boc protected 3 was easily accessible from (S)‐Garner aldehyde.  相似文献   

15.
Fmoc‐β2hSer(tBu)‐OH was converted to Fmoc‐β2hSec(PMB)‐OH in five steps. To avoid elimination of HSeR, the selenyl group was introduced in the second last step (Fmoc‐β2hSer(Ts)‐OAll→Fmoc‐β2hSec(PMB)‐OAll). In a similar way, the N‐Boc‐protected compound was prepared. With the β2hSe‐derivatives, 21 β2‐amino‐acid building blocks with proteinogenic side chains are now available for peptide synthesis.  相似文献   

16.
The synthesis of several Ntert‐butoxycarbonyl(Boc)‐protected‐N‐substituted hydrazines has been accomplished. The use of these protected hydrazines in SNAr substitutions leads to products in which the most nucleophilic nitrogen displaces the leaving group. Treatment of these compounds with trifluoroacetic acid readily removes the Boc‐protecting group and the intermediates readily undergo cyclizations to yield N‐1‐substituted aza‐benzothiopyranoindazoles, anthrapyrazoles and aza‐anthrapyrazoles. Side chain buildup was employed in the synthesis of several aza‐anthrapyrazoles.  相似文献   

17.
A highly stereoselective aza‐Henry reaction of α‐aryl nitromethanes with aromatic N‐Boc imines was established by using C1‐symmetric chiral ammonium betaine as a bifunctional organic base catalyst. Various substituted aryl groups for both imines and nitromethanes were tolerated in the reaction, and a series of precursors for the synthesis of unsymmetrical anti‐1,2‐diaryl ethylenediamines was provided.  相似文献   

18.
The incorporation of the β‐amino acid residues into specific positions in the strands and β‐turn segments of peptide hairpins is being systematically explored. The presence of an additional torsion variable about the C(α) C(β) bond (θ) enhances the conformational repertoire in β‐residues. The conformational analysis of three designed peptide hairpins composed of α/β‐hybrid segments is described: Boc‐Leu‐Val‐Val‐DPro‐β Phe ‐Leu‐Val‐Val‐OMe ( 1 ), Boc‐Leu‐Val‐β Val ‐DPro‐Gly‐β Leu ‐Val‐Val‐OMe ( 2 ), and Boc‐Leu‐Val‐β Phe ‐Val‐DPro‐Gly‐Leu‐β Phe ‐Val‐Val‐OMe ( 3 ). 500‐MHz 1H‐NMR Analysis supports a preponderance of β‐hairpin conformation in solution for all three peptides, with critical cross‐strand NOEs providing evidence for the proposed structures. The crystal structure of peptide 2 reveals a β‐hairpin conformation with two β‐residues occupying facing, non‐H‐bonded positions in antiparallel β‐strands. Notably, βVal(3) adopts a gauche conformation about the C(α) C(β) bond (θ=+65°) without disturbing cross‐strand H‐bonding. The crystal structure of 2 , together with previously published crystal structures of peptides 3 and Boc‐β Phe ‐β Phe ‐DPro‐Gly‐β Phe ‐β Phe ‐OMe, provide an opportunity to visualize the packing of peptide sheets with local ‘polar segments' formed as a consequence of reversal peptide‐bond orientation. The available structural evidence for hairpins suggests that β‐residues can be accommodated into nucleating turn segments and into both the H‐bonding and non‐H‐bonding positions on the strands.  相似文献   

19.
The palladium‐catalyzed ligand‐controlled arylation of α‐zincated acyclic amines, obtained by directed α‐lithiation and transmetalation, is described. Whereas PtBu3 gave rise to α‐arylated Boc‐protected amines, more flexible N‐phenylazole‐based phosphine ligands induced major β‐arylation through migrative cross‐coupling.  相似文献   

20.
β‐Peptides offer the unique possibility to incorporate additional heteroatoms into the peptidic backbone (Figs. 1 and 2). We report here the synthesis and spectroscopic investigations of β2‐peptide analogs consisting of (S)‐3‐aza‐β‐amino acids carrying the side chains of Val, Ala, and Leu. The hydrazino carboxylic acids were prepared by a known method: Boc amidation of the corresponding N‐benzyl‐L ‐α‐amino acids with an oxaziridine (Scheme 1). Couplings and fragment coupling of the 3‐benzylaza‐β2‐amino acids and a corresponding tripeptide (N‐Boc/C‐OMe strategy) with common peptide‐coupling reagents in solution led to β2‐di, β2‐tri‐, and β2‐hexaazapeptide derivatives, which could be N‐debenzylated ( 4 – 9 ; Schemes 2–4). The new compounds were identified by optical rotation, and IR, 1H‐ and 13C‐NMR, and CD spectroscopy (Figs. 4 and 5) and high‐resolution mass spectrometry, and, in one case, by X‐ray crystallography (Fig. 3). In spite of extensive measurements under various conditions (temperatures, solvents), it was not possible to determine the secondary structure of the β2‐azapeptides by NMR spectroscopy (overlapping and broad signals, fast exchange between the two types of NH protons!). The CD spectra of the N‐Boc and C‐OMe terminally protected hexapeptide analog 9 in MeOH and in H2O (at different pH) might arise from a (P)‐314‐helical structure. The N‐Boc‐β2‐tri and N‐Boc‐β2‐hexaazapeptide esters, 7 and 9 , were shown to be stable for 48 h against the following peptidases: pronase, proteinase K, chymotrypsin, trypsin, carboxypeptidase A, and 20S proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号